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ABSTRACT 

Tactile communication requires rapid data transfer along a common bus. The 

developed communication protocol and application-specific interface chip enable precise 

control of multiple tactile transmitters (tactors) to convey information to military users. This 

extrapolation of the Tactile Situation Awareness System developed by the Naval Aerospace 

Medical Research Laboratory uses a serial data bus and individual interface chips to 

communicate commands with a minimum number of conductors. This thesis develops the 

communication protocol and the design of the Tactor Interface Chip (TIC). This work also 

includes a computer-driven tactile array controller and Parallel Port Data Modulator for TIC 

testing and demonstration. 
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I. INTRODUCTION 

In a natural environment, people continuously receive sensory information regarding 

their position and motion from several sources: visual, aural, and somatosensory (distinct 

bodily sensations such as balance). In an accelerating environment, human sensory 

information can produce a false sensation of motion. Popular "virtual reality" amusement 

rides exploit this effect by providing visual, aural, and somatosensory stimulation that 

generates illusory feelings of motion and acceleration. 

Under normal flight conditions, pilots frequently transition between a steady 

environment and an accelerating one. When most time is spent in a constant velocity 

condition, all sensory information concurs with the actual motion and spatial orientation is 

maintained. During periods of extended acceleration, such as steep climbs, the body's 

somatosensory equilibrium shifts and a false sense of acceleration is experienced during the 

subsequent steady environment. This conflicting sensory information can cause a loss of 

situational awareness and spatial disorientation. During periods of visual distraction or 

obscurity, the pilot must rely on his "feel" for the attitude of the aircraft. The false 

acceleration sensation has contributed to many aircraft accidents by causing loss of 

situational awareness and spatial disorientation. 

When combing an underwater mine field, divers must swim a geographically 

referenced search pattern. Geographic position indicators aid the swimmer in combating the 

effects of current to maintain the desired search pattern. The current guidance system 

provides a visual display of the required swimming direction.   Consequently, the divers' 



visual search effectiveness becomes severely degraded while they are referencing their 

positional displays. 

An interface that provides critical information without operator distraction would 

benefit many military applications. An ideal system would communicate information 

through a medium that does not interrupt concurrent visual and auditory interchange. A 

prototypical interface has been developed to tactilely convey information by pulsing tactile 

transmitters ("tartars"). These tactors are situated around the torso to provide physical 

stimulus in the form of variable-length, pulsed vibrations. 

A. COMMUNICATING THROUGH TOUCH 

Touch is a physical sensory input not commonly associated with conveying 

computer information. Yet, when a person is touched, the response is immediate and often 

involuntary. The immediate nature of touch response makes it ideal for communicating 

critical information. Tactile communication can also be the most appropriate interface for 

specific types of information when existing visual and auditory activities cannot be 

compromised. 

Existing research shows that various sensory responses can be effected by using 

different tactile stimulus methods. Employing "sensory saltation" can produce a feeling of 

directional motion using stationary tactors. Using a moving stimulus produces easily 

interpreted information that is consistent among many observers. 

Additional research identified flight information required to properly operate various 

fighter platforms. The required flight data was evaluated for each of the fighters to 

determine how well the aircraft presented the parameters to the pilot. Many flight 

characteristics are poorly represented in each airframe.  The research proposed conveying 



flight parameters through tactile transmitters mounted in a partial sleeve worn on the pilot's 

forearm.10 

B. TACTILE SITUATION AWARENESS SYSTEM BY NAMRL 

The Naval Aerospace Medical Research Laboratory (NAMRL) built a rudimentary 

implementation of tactile communication in their Tactile Situation Awareness System 

(TSAS). As illustrated in Figure 1, the current TSAS implementation uses a remote, parallel 

driver to individually power forty (40) tactors. This method requires routing forty pairs of 

power lines throughout the tactile vest. A simpler communication method is needed to ease 

vest fabrication and maintenance. Additionally, the microprocessor is constantly burdened 

with directly controlling power application to every individual tactor. 
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Figure 1. TSAS Tactor Control. 

The wiring harness requirements could be dramatically reduced by using a bus 

communication structure with local power switching. This approach would provide a 

standardized wiring scheme and eliminate the continuous processor load caused by remote 



power control. A bus architecture would also maximize flexibility by allowing the number 

of tactors to be varied between interface applications. 

A miniaturized network interface card will allow connecting all tactors to a single 

information bus as shown in Figure 2. Each interface chip will continuously monitor the 

bus for a command addressed to its tactor. Upon detection of a properly addressed 

command packet, the interface card will decode and execute the command. Power will be 

switched by the interface chip to allow the controlling microprocessor to dedicate its full 

processing ability to interfacing with the host technology and determining the best tactile 

representation of the received platform parameters. 
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Figure 2. Local Tactor Control. 

C. DEVELOPING INTELLIGENT TACTORS 

To refine the tactile interface, we developed a compact communication topology for 

connecting each tactile transmitter to the controlling microprocessor. Serial 

communications were selected for this application to minimize the number of conductors 

required for data transfer. 



An application-specific Tactor Interface Chip (TIC) provides the necessary hardware 

to realize the communication scheme. Each tactor in a forty-element array will include a 

TIC, as shown in Figure 3, that controls tactor activation. This hardware combination forms 

an "intelligent tactor" that shifts waveform creation from the microprocessor to the 

individual tactor assemblies. The resulting decrease in computational load allows use of a 

slower microprocessor, decreasing system power consumption. 

tactor 
housing Tactor Interface Chip 

Figure 3. Composition of the Intelligent Tactor. 

D. THESIS OUTLINE 

The remainder of this thesis is organized as follows.     Chapter II discusses 

development of the communication protocol. Chapter III discusses specification and design 

of the Tactor Interface Chip. Chapter IV discusses the layout and evaluation for the VLSI 

implementation of the chip.    Chapter V describes development of a parallel-port data 

modulator used to drive the tactor array during testing and demonstration.   Chapter VI 
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discusses testing the fabricated chip. Chapter VII describes revisions to the communication 

protocol. Chapter VIII discusses design changes to incorporate additional features in the 

interface chip. Finally, Chapter IX contains conclusions and suggestions for future work. 

Many appendices are included to provide specific technical data necessary to fully 

understand the design efforts and decisions. Appendix A contains listings of the Verilog 

source code used to design and evaluate the electronic modules that comprise the TIC. 

Appendix B provides schematic diagrams of all TIC modules and components. Appendix C 

details the SPICE simulations performed to validate and verify all aspects of the TIC design. 

Appendix D covers the animation program used to illustrate the operational relationships 

between the received components and the various TIC components. Appendix E contains 

the design details of the VLSI logic elements used to implement the TIC on a single 

microchip. Appendix F provides all design efforts in creating the Parallel Port Data 

Modulator for sending commands from a standard computer parallel port to the tactile array. 

Appendix G documents the program written in C++ to place command bytes on the parallel 

port for subsequent transmission by the command modulator. Appendix H includes a copy 

of Reference 2, the paper presenting this research to the 1999 Government Microcircuit 

Application Conference (GOMAC). The files listings from all appendices have been 

compiled separately on CD-ROM. 



n. COMMUNICATION PROTOCOL 

To support implementation of a tactile information interface, it is necessary to 

develop a communication protocol that meets the system control requirements. When a 

suitable command protocol is defined, various architectures can be evaluated to determine 

the best option for rapid communication between a controlling microprocessor and (at least) 

forty tactile transmitters. Flexibility and expansion are supported by using a common 

communication bus and intelligent tactors. As mentioned in the previous chapter, an 

intelligent tactor is formed by mounting a Tactor Interface Chip (TIC) in the tactor housing 

(see Figure 3) to locally control tactor activation. This chapter presents the command 

structure developed and the communications architectural design to implement the tactile 

interface. 

A. DESIGN REQUIREMENTS 

To establish a framework for system design, we must first take a macroscopic view 

of the intelligent tactor. Fundamentally, the TIC must control the application of current to 

the attached tactor as directed by the system controller. Additionally, the command 

structure must support the addition of ore tactors to the present system. 

1. Required Output 

Each TIC must provide a controlled, bi-directional current to the attached tactor in 

response to commands it receives from the controlling microprocessor. When activated, the 

TIC must energize the tactor at the specific frequency for which the tactor is designed. The 

activation duty cycle is determined by the commands received; commands are fully 

discussed in the following section.    The TIC must activate the tactor as soon as an 



appropriate command is received and it must immediately stop tactile stimulus when a 

"terminate" command is received. 

Bi-directional current is achieved using the switching network illustrated in Figure 4. 

The TIC activates the switch pairs of Figure 4 in an alternating fashion to drive current 

through the tactor in opposite directions. 

Figure 4. Tactor Current-Switching Structure. 

2. System Configuration 

The tactor control system must be capable of independently issuing commands to 

forty individual tactors. The activation cycle should repeat with a minimum period of 100 

mS and a maximum of 4000 mS. During the activation cycle, the TIC must be able to adjust 

the length of activation from a minimum of approximately 50 mS to a maximum of 

approximately 1000 mS. Finally, the system must be able to sequentially activate two 

tactors within one millisecond (1 mS) of each other. 



B. CONTROLSTRUCTURE 

1. Address 

Transmission of tactile messages requires each tactor in the forty-element array to be 

capable of producing defined pulse shapes. These tactile signals can be independent or 

synchronized with several other tactors. Each TIC must be able to recognize commands 

meant to control its attached tactor since the pulse shape parameters are transmitted on a 

common data bus. Unique identification is accomplished by assigning an "address" to each 

TIC. 

2. Pulse Shape 

Tactors are repeatedly pulsed to convey information to the user. Changing the pulse 

duration and pulse rate creates different physical sensations; this can be used to relate 

differing messages. Pulse shape production requires two parameters, pulse width and 

repetition period, illustrated in Figure 5. These values are stored in TIC data registers and 

are used to control tactor activation. 

K pulse width 

bipolar tactor 
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Figure 5. Tactor Activation Parameters. 



C COMMAND FORMAT 

It is best to use an eight-bit command language format, if possible, since the tactor 

array is being driven by a commercial-off-the-shelf microprocessor and associated 

communication ICs. Therefore, the first iteration of the command structure evaluated the 

feasibility of incorporating all desired TIC functionality within the 256 different eight-bit 

commands. To simplify the interpretation of the commands, it is most effective to group the 

commands together in a way that minimizes the number of bits that uniquely identify a 

command type. Considering these two goals and the three basic command types it is best to 

separate the commands into one set of 128 and two sets of 64. To accommodate the desired 

number of tactors and to allow for future expansion with more tactors or multiple addresses 

on a single TIC (discussed later), the 128 command group is assigned to the address 

commands. This provided similar command words for the two register-type command sets, 

pulse width and repetition period. The command distribution plan is outlined in Table 1 and 

discussed in more detail in the following subsections. 

Command Word Meaning 

Oxxxxxxx 7-bit Address 

lOxxxxxx 6-bit Pulse Width 

1lxxxxxx 6-bit Repetition Period 

Table 1. Command Word Definitions. 

1. Address Command Word 

The tactor address command word indicates to which tactor the subsequent 

command is being sent. This addressing plan allows issuing a command to a single tactor 

since each TIC contains a unique identifier.   Table 2 summarizes the address command 
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word format. The all-zeros address is not used since this is the reset condition of the TIC 

input register and internal data bus. The current convention provides capacity for up to 126 

tactors. Additionally, the format can support future incorporation of tactor group 

addressing. The all-ones address is hard-wired into every TIC to provide a universal 

command capability. Uses for the "ALL CALL" configuration include turning off all 

tactors during operations or energizing all tactors for testing. System design allows 

stringing several addresses together before issuing the register command bytes. This will 

facilitate concurrently issuing an identical command to numerous tactors. 

Address Word Meaning 

00000000 Reserved ~ TIC bus idle condition 

00000001 
to 

01111110 

Addresses for up to 126 tactors; may 
also include group addresses. 

01111111 ALL CALL ~ all tactors respond 

Table 2. Address Format Description. 

2. Pulse Width Word 

The Pulse Width command sets the actual length of time the tactor is energized. The 

Pulse Width command format is summarized in Table 3. This command is implemented by 

passing a value that represents the number of 16 mS time divisions to apply power to the 

tactor. A value of zero is used to turn off the tactor. Using 16 mS time divisions with a 6- 

bit multiplier (factor) produces 63 possible activation lengths including 0, 16, 32, . . . and 

1008 mS. The 16 mS time divisions are generated by dividing an input reference pulse. 
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Register Command Meaning 

10000000 Turn tactor OFF 

10000001 
to 

10111111 

Set Pulse Width to 1 through 63 
multiples of 16 mS (16 to 1008 mS) 

Table 3. Pulse Width Register Command Description. 

3. Repetition Period Word 

The Repetition Period command defines the period used for pulse repetition. The 

Repetition Period command format is summarized in Table 4. This command is 

implemented by passing a value that represents the number of 64 mS time divisions to wait 

before re-energizing the tactor. If Pulse Width is greater than zero, a zero Repetition Period 

will energize the tactor continuously. Using 64 mS time divisions with a 6-bit multiple 

produces 63 possible repetition period lengths ranging from 64 mS to 4032 mS. The 64 mS 

time divisions are also generated by dividing an input reference pulse. A repetition value 

that represents a time length less than or equal to the "on" time will keep the tactor 

continuously energized. 

Register Command Meaning 

1 1000000 Tactor ON continuously if PW > 0 

11000001 
to 

11111111 

Set Repetition Period to 1 through 63 
multiples of 64 mS (64 to 4032 mS) 

Table 4. Repetition Period Register Command Description. 

D. BUS ARCHITECTURAL CONSIDERATIONS 

A primary concern regarding interface design is ease of system fabrication and 

maintenance. Basic error detection is necessary from an operational perspective to prevent 
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system response to spurious noise. A parity checksum is used to detect single-bit errors. 

This section compares two communications architectural design options for the tactile 

interface. 

1. Command Promulgation Speed 

From a system architecture perspective, the most critical constraint is the speed at 

which commands must be implemented by the TIC. This constraint is extrapolated from the 

specification for a 1 mS maximum time between commands. The 1 mS maximum 

command separation requirement can be met using either a parallel or serial data bus by 

adjusting the data transmission clock speed. To evaluate the minimum data bus speed for 

different architectures, the frequency required to transmit a given command length in 1 mS 

is calculated. In a parallel implementation, each command byte requires a single clock cycle 

to transmit. In a serial implementation, each byte requires eleven clock cycles: a start bit, 

eight data bits, a parity bit, and a stop bit. Table 5 summarizes the bus speed requirements. 

Command Length Parallel Bus Speed Serial Bus Speed* 

2 bytes 2 kHz 22 kHz 

3 bytes 3 kHz 33 kHz 

4 bytes 4 kHz 44 kHz 

5 bytes 5 kHz 55 kHz 

* Serial communication incurs a 3-bit overhead for data packet formatting. 

Table 5. Required Bus Speed for Different Architectures. 

2. Parallel Bus 

Parallel bus architecture allows the fastest data transfer from the microprocessor to 

the TIC.  However, Table 5 shows that data transfer rates are not a limiting factor for this 
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application since bus speeds over 1 MHz are available. The advantages and disadvantages 

of using parallel bus architecture include: 

a. Advantages: 

(1) Simplified TIC circuit design. The TIC could directly latch the 

data byte from the external bus onto the internal command bus. 

(2) Much faster data transfer or lower required bus speed for a given 

data rate. The reduction in required speed would reduce the required transmission power. 

b. Disadvantages: 

(1) Additional wiring is required in the harness assembly and vest 

for data communications. This greatly complicates the fabrication process and makes 

maintenance and repair much more difficult. This also increases the size of the wiring 

harness and the weight of the system implementation. 

3. Serial Bus 

Serial bus architecture reduces the number of wires needed for data transferring but 

it requires a much more complex TIC input design. Advantages and disadvantages of using 

serial bus architecture include: 

a. Advantages: 

(1) A minimum number of wires can be used in the wiring harness 

and vest. This will ease fabrication and maintenance while reducing the size and weight. 

b. Disadvantages: 

(1) Much slower data transfer rate or higher required bus speed for a 

given data rate. 
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(2) Much more complex TIC input circuitry. A serial to parallel 

decoder must be implemented to support conversion of the serial data stream to parallel 

command words. 

E. ARCHITECTURAL DECISION AND JUSTD7ICATION 

The Serial Bus architecture is used for this implementation. This choice is primarily 

based on the following essential considerations: 

1. Fewer harness conductors will make vest construction and maintenance much 

easier. Fewer connections at each TIC will also reduce the risk of failure and incorrect 

wiring. Additionally, fewer wires will minimize the system size and weight. 

2. Conversion from parallel data to a serial communication stream is easy to include 

at the controlling microprocessor. This custom parallel-to-serial conversion can be easily 

adapted to allow use of many different microprocessors for future implementations. 

3. Serial to parallel conversion at the TIC can be included in the VLSI design and 

actually requires about the same layout area necessary to accommodate eight additional 

input pads. 

F. TRANSMISSION PACKET FORMAT 

The Universal Synchronous/Asynchronous Receiver-Transmitter (USART) standard 

provides a format for transmitting eight bit data by encapsulating the data into an eleven-bit 

packet. The USART packet model is used to package the command bytes into a serial bit 

stream that can be easily detected. The command packet, illustrated in Figure 6, includes a 

start bit, eight data bits, a parity bit, and a stop bit. This package format also provides basic 

fault protection by detecting all single-bit errors. While idle, the data line is held at a logic 

"1"(+5V). 
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Figure 6. Standard USART data packet format. 

When no data is present, the serial communication line is in an idle state, held at 

logic 1. The data packet begins with a start bit that consists of a single 0. The start bit is 

followed by eight bits of data, which are transmitted in order from the most significant bit to 

the least significant bit. A running count is performed on the data bits and the number of l's 

is used to calculate the value of the parity bit. Using odd parity (the typical mode) yields a 

parity bit of 1 when the data bit count is even and a value of 0 when the data bit count is 

odd. This scheme always produces an odd number of l's at the receiver when the eight data 

bits and single parity bit values are counted. The parity, bit provides detection of all single- 

bit errors in the data stream. Finally, a stop bit of 1 is sent and the system is ready to 

transmit the next data packet. 

G. PHYSICAL CONSTRUCTION REQUIREMENTS 

Inputs to the TIC fall into two basic categories: chip/tactor power and data/timing 

signals. Table 6 summarizes the input requirements for the intelligent tactor. 

Line Description 

a) +5V Power for TIC and tactor 

b) Ground Common ground line 

c) Data Serial communication bus 

d) Clock Synchronous clock signal 

Table 6. Intelligent Tactor Input Requirements. 
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1. TIC and Tactor Power 

The chip and tactor share a single +5 V power supply and a single ground line. Very 

little power is needed to operate the chip since CMOS FET technology was used for TIC 

fabrication. The entire chip, consisting of roughly 2000 transistors, requires approximately 

8 mA of current. Each tactor will require between 100 mA and 250 mA (depending on 

installed tactor) during operation. 

2. Command Data and Timing Signals 

The TIC receives all data on a single line whose voltage is referenced to the 

common ground. A clock signal provided by the microprocessor facilitates synchronous 

serial data transfer. The clock signal is also used to generate the timing references for the 

control down counters and the tactor current oscillator. 
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in. TACTOR INTERFACE CHIP SPECIFICATION AND DESIGN 

After defining the communication protocol needed to convey control signals to the 

tactile interface, it is necessary to develop the hardware that will convert the serial 

commands into tactile stimulus. The Tactor Interface Chip (TIC) is the application-specific 

integrated circuit that converts the serial command stream into the bi-directional current that 

drives the tactile stimulators. After discussing the TIC design goals, this chapter relates the 

development process through all levels of abstraction. The conceptual operation is first 

discussed as a system that is broken into three functional modules. Each functional module 

is then defined by its operational requirements. The functional modules are then separated 

into several assemblies with specific, cardinal tasks. Behavioral level system modeling and 

simulation is then explained. Behavioral model conversion into logical structures and the 

simulation and testing is described next. Finally, advanced system design features included 

in the TIC are discussed. 

A. DESIGN GOALS 

In creating an intelligent tactor, the two primary design goals resulted from the need 

to incorporate the TIC directly into the tactor casing. First, to reduce the size of the tactor 

casing, all control circuitry must fit onto a single VLSI control chip.  Second, to simplify 

tactile interface production, a single design must be used for all tactors in the array. In the 

prototypical version, use of a single TIC design for all tactors is possible by externally 

setting the address parameter by grounding TIC input pins.  In a future implementation, a 

better mechanism could be devised to define the address of an individual tactor. The initial 

TIC design also does not incorporate the solid-state power switches necessary for causing 

bi-directional current to flow in the tactor.  External power transistors are used to provide 
19 



current switching based on control signals from the TIC. This design was accepted due to 

the expense of fabricating large transistors in a BiCMOS chip. Planned modifications to the 

existing design are discussed in the "Future Improvements" section of this thesis. 

B. OPERATIONAL CONCEPT 

Conceptually, the Tactor Interface Chip will interpret commands received on a serial 

data bus and control tactor activation based on those commands. This scheme can be 

broken into the three functional areas, recovery of the eight-bit command from the serial 

data stream, interpretation of the command to affect wave shape parameters, and generation 

of the ordered waveform. This organization is illustrated in Figure 7 and discussed in the 

following subsections. 
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Figure 7. TIC Functional Modules. 
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1. Serial Data Receiver 

The first functional component, the Serial Data Receiver, continuously monitors the 

serial data bus and decodes the bit stream to detect properly formatted data packets. When a 

valid packet is detected, the command byte is latched onto an internal command bus and a 

data-valid signal is sent to the Command Decoder and Controller. 

2. Command Decoder and Controller 

The second functional component is the Command Decoder and Controller. This 

module interprets every command received to determine if the command applies to the 

attached tactor. Relevant commands are executed and the associated memory registers are 

updated. Extraneous commands are ignored. The Tactor Power Controller is notified of 

changes to ensure that tactor activation is immediately adjusted to conform to the new 

parametric settings. 

3. Tactor Power Controller 

The final functional component is the Tactor Power Controller. This module 

continuously produces two complementary timing signals tuned to the operating frequency 

of the attached tactor. These signals are used to alternately activate the switch pairs in the 

current-switching network shown in Figure 4. When timing signals are applied to the 

switching network, the tactor provides stimulus to the user. The activation wave shape 

described in Figure 5 is created by passing and blocking the oscillation signals based on the 

Pulse Width and Repetition Period values stored in the memory registers of the Command 

Decoder and Controller. 
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C. OPERATIONAL DESCRIPTION 

The heart of TIC operations is the Command Decoder and Controller. As new 

commands are placed on the command bus by the Serial Data Receiver, the data-valid signal 

triggers evaluation by the Command Decoder and Controller. Response to the received 

commands is controlled by the existing TIC operational state. The operational state changes 

based on the current state and the valid commands received by the TIC. The state diagram 

in Figure 8 illustrates the TIC operating sequence and defines the state transitions. 

Awaiting Valid Address 

Register Command Received Valid Address Received 

Initial State Transition Condition Next State 

All Reset asserted A 

A Bus valid & valid address B 

B Any other address received B 

B Any register command received C 

C Any address received A 

C Any register command received C 

Figure 8. TIC Operating States and Transitions. 

22 



Initially, the TIC is in a monitor state waiting to receive a valid address. When an 

appropriate address is received, the TIC shifts to a condition that waits for a command to set 

the register values. When a register command is received, the TIC enters a state that 

responds to all register commands until an address is detected. Any address received after a 

register command marks the end of the command cycle and shifts the TIC to the monitor 

state where it waits for the next properly addressed command set. This operating sequence 

provides easy control consistent with the defined communication structure. An additional 

benefit of this approach is that it allows a set of register commands to be sent to several 

tactors simultaneously by preceding the commands with a string of address words. 

D. FUNCTIONAL MODULE DESIGN 

The top-down approach greatly simplifies circuit design by separating the specific 

tasks into three functional modules. Each functional module is designed to operate 

independently with well-defined inputs and outputs. This modular approach also greatly 

simplifies testing at all design levels. 

1. Serial Data Receiver 

The Serial Data Receiver (Figure 9) continuously monitors the input data line to 

detect and latch transmitted packets onto the command bus. It consists of a twelve-bit shift 

register, a validity checker, and an eight-bit latch. The twelve most recent data bits received 

on the serial data input line are stored in the shift register. The entire 12-bit set is evaluated 

using the data-packet format rules. When a string of bits is detected that meets the validity 

check, the byte embedded within the data packet is latched onto the command bus. The 

latch signal also generates a "Bus Data Valid" signal that triggers command decoding. 

When a valid command is latched, a feedback path partially clears the shift register. This 
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Clearing action ensures that two immediately sequential data packets do not produce an 

erroneous command detection as shown in Figure 10. The partial clearing action also resets 

the latch signal since the shift register contents no longer match the required data packet 

format. 
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Figure 9. Serial Data Receiver Elements. 
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Figure 10. Partial clearing prevents Erroneous Command Detection. 

2. Command Decoder and Controller 

The Command Decoder and Controller (Figure 11) evaluates the received 

commands and adjusts the internally stored waveform parameters if the command is 

properly addressed to the attached tactor. It consists of a sequence controller, address 

comparator, address reference, and two six-bit registers. The sequence controller is a state 
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machine (refer to Figure 8) that causes the TIC to react only to properly addressed 

commands. The address reference maintains a unique address for the individual tactor. The 

address comparator provides a "valid address" signal if the command bus holds either the 

value stored in the address reference or the "all call" address. The TIC ignores all received 

commands until the address comparator detects a valid address. It then updates the stored 

value of pulse width or repetition period with every new register command. The pulse 

width and repetition period registers operate identically. The registers continuously monitor 

the command bus and indicate when the register value matches the bus value. If a command 

is received that attempts to set the register to its current value, the command is ignored to 

prevent a spurious interruption of the tactor activation cycle. If the difference signal 

indicates that the register value must be changed, the new value is latched and the difference 

signal is used to clear the latch signal. When the register value is updated, a control signal is 

generated to force the Tactor Power Controller to restart the tactor activation cycle so it will 

match the new register values. This resetting action ensures that received register 

commands are instantly implemented, thus securing tactor activation immediately upon 

receipt of a termination (set pulse width to zero) command. Subsequently, when an address 

is received, the TIC returns to the monitor condition and waits for the next properly 

addressed command set. 
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Figure 11. Command Decoder and Controller Elements. 

3. Tactor Power Controller 

The Tactor Power Controller (Figure 12) converts the input data signals into pulsed 

bi-directional current that is applied directly to the tactor by using the switching network 

illustrated in Figure 4. A frequency divider reduces the 1 MHz clock to a selectable tactor 

oscillating frequency and a 62.5 Hz down counter clock. The oscillator frequency is applied 

to the power oscillator to produce alternating current for the tactor.  The power controller 

uses two synchronized down counters to create the stored wave.  Both down counters are 

designed to count once from the loaded value to zero, maintaining the zero value once it is 

reached. The pulse width down counter includes a status signal indicating when the count 

value is equal to zero. The repetition period down counter includes a status signal indicating 

when the count is greater than one.  The control logic clears or loads both down counters 

based on the down counter conditions and the control signal received from the Command 
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Decoder and Controller. These two down counter conditions are used to control tactor 

activation by either passing or blocking the oscillation signals to the current switching 

network. 
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Figure 12. Tactor Power Controller Elements. 

E. VERILOG® DESIGN VERIFICATION 

. Each functional module was simulated and thoroughly tested using the Verilog1 

modeling system. First, behavior models were designed for all components and tested to 

validate the design descriptions. The components were then assembled to create the 

functional modules and tested to ensure proper operation of each module. The functional 

modules were then assembled into a behavioral model for the entire TIC. This system 

model was fully tested to ensure proper operation of the entire interface before 

implementing the behavioral definitions into structural elements. The Verilog® models and 

testing "benches" used for system design are included in Appendix A. 
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1. Twelve-Bit Input Shift Register 

The twelve-bit input shift register is critical to decoding the serial data stream into 

the transmitted command bytes. Twelve bits are required to validate the input stream 

because the data packet format is eleven characters long and because the data line is held at 

a logic "1." The shift register accepts input from the serial data line, clock, reset, and partial 

clear. The shift register provides an output bus containing the value for each of the most 

recent twelve bits received by the Serial Data Receiver. Table 7 summarizes the signals 

used and produced by the twelve-bit input shift register. On the rising edge of each clock 

cycle, a new data bit is latched into the lowest position of the shift register and all other bits 

are shifted up one position. When a reset signal is received, all bits on the output bus are 

immediately cleared to a logic "0." When a partial clear signal is received, the oldest ten 

bits on the output bus are immediately cleared to a logic "0" and the lowest two bits retain 

their existing values. 

Twelve-Bit Input Shift Register Input and Output 

In] 
Signal 

3Ut 

Source 

Out 
Signal 

put 
Destination 

input data serial data input input bus data latch, 
input validity check 

partial clear input validity check 

clock clock input 

reset system 

Table 7. Summary of Signals for the Twelve-Bit Input Shift Register. 

2. Eight-Bit Data Latch 

The eight-bit data latch drives the internal TIC command bus.   The data latch 

receives input from the shift register output, reset, and a latch signal. Input from the shift 
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register is limited to the data lines representing the data-packet command byte. The output 

from the data latch is simply the TIC command bus value. Table 8 summarizes the signals 

used and produced by the eight-bit data latch. When a latch signal is received, the data latch 

locks the value of each command bit onto the command bus. When a reset signal is 

received, all bits on the command bus are immediately cleared to a logic "0." 

Eight-Bit Data Latch Input and Output 

Input 
Signal 

input busH 

latch 

reset 

Source 

shift register 

input validity check 

system 

Output 
Signal 

command 
bus 

Destination 

command sequence 
controller, address 
comparator, pulse 
width register, 
repetition period 
register  

* only the bit positions representing the command byte 

Table 8. Summary of Signals for the Eight-Bit Data Latch. 

3. Input Stream Validity Check 

The input stream validity check component continuously evaluates the shift register 

output to detect a properly formatted command packet. The validity checker receives input 

from the shift register output, reset, and clock. The validity checker produces the latch 

signal used by the data latch, the partial clear signal used by the shift register, and a bus 

valid signal used by the command sequence controller component of the Command Decoder 

and Controller module. Table 9 summarizes the signals used and produced by the input 

stream validity checker. 
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Input Stream Validity Check Input and Output 

Input 
Signal             Source 

Output 
Signal             Destination 

input bus shift register latch data latch 

clock clock input bus valid command sequence 
controller 

reset system partial clear shift register 

Table 9. Summary of Signals for the Input Stream Validity Check. 

A format flag is used to create the output latch signal. The format indicator is 

continuously generated by evaluating the twelve bits input from the shift register against the 

packet format rules. Four specific conditions are required to generate the format flag: a) the 

highest bit must be a logic "1" representing either an idle serial input bus or the stop bit from 

a previous command, b) the second highest bit must be a logic "0" representing the start bit 

for the current command, c) the lowest bit must be a logic "1" representing the stop bit for 

the current command, and d) the parity check must yield a logic "1." The parity check is 

performed using an XOR of the data bits and the parity bit. The format command may 

experience some perturbations immediately following the positive clock edge as the input 

bits change because the shift register data is shifted on the rising clock edge. To avoid 

creating an erroneous latch command, the latch signal is not generated until the second half 

of the clock cycle. 

When the latch signal is triggered, a bus valid signal is produced to indicate the 

presence of a valid command to the Command Decoder and Controller. This bus valid flag 

continues for ten clock cycles, at which time it is cleared.  The signal that clears the bus 

valid flag is produced by the bus valid signal and the detection of "0 1" in the highest two bit 

positions of the shift register.   This condition can only exist when the stop bit from the 
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current valid command reaches the second highest position of the shift register. Elimination 

of the bus valid signal prepares the command bus for the command byte that might 

immediately follow the current command. 

After the format flag and the clock produce the latch signal, the command byte is 

locked onto the TIC command bus. Then, a partial clear signal clears the highest ten bits in 

the shift register to prevent the shifting bits from producing an erroneous command 

detection. The partial clear is generated by detecting both the format flag and the bus valid 

signal at the same time; a condition that indicates a valid command has been successfully 

latched. When the partial clear signal clears the highest ten input bits, the format becomes 

incorrect and the format flag becomes "0." When the format flag changes "0," the latch 

condition is lost and the latch signal is reset to "0." Additionally, the partial clearing of the 

shift register forces the "0 1" transition that will clear the bus valid signal in ten clock cycles. 

4. Command Sequence Controller 

The command sequence controller is the component in the Command Decoder and 

Controller module that acts as the central command processor for the TIC. It is responsible 

for interpreting received commands and establishing the ordered tactile stimulus parameters. 

The command sequence controller receives the bus valid signal, the valid address signal, the 

pulse width difference flag, repetition period difference flag, clock, and reset signal. The 

command sequence controller generates an enable output signal used by the Tactor Power 

Controller module, a pulse width latch signal for the pulse width register, and a repetition 

period latch signal for the repetition period register. Table 10 summarizes the signals used 

and produced by the command sequence controller. 
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Command Sequence Controller Input And Output 

In] 
Signal 

3Ut 

Source 
Output 

Signal             Destination 

command 
bus 

data latch enable output power control logic 

pulse width 
difference 

pulse width register pulse width 
latch 

pulse width register 

repetition 
period 
difference 

repetition period 
register 

repetition 
period latch 

repetition period 
register 

bus valid input validity check 

valid address address comparator 

clock clock input 

reset System 

Table 10. Summary of Signals for the Command Sequence Controller. 

When the system reset is applied, the command sequence controller shifts to state 0 

and the enable output, pulse width latch, and repetition period latch signals are all set low. 

Since all outputs from this component are dependent on the controller operational state, the 

state transitions are discussed before the actual output signals are described. With the 

exception of a system reset, all output parameters are changed only after both a valid address 

has been detected and a register command has been received. Additionally, the outputs may 

change many times during the period following a valid register command. 

The command sequence controller remains in state 0 until a valid address is present 

on the command bus. The valid address signal from the address comparator allows the 

command sequence controller to shift to state 1. The command sequence controller remains 

in state 1 for all subsequent address commands until a register command (either pulse width 

or repetition period) is present on the command bus.   The register command causes the 
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sequence generator to shift to state 3. State 2 is a transient condition that is not used by the 

command sequence controller and any occurrence of state 2 resets to state 0. The command 

sequence controller remains in state 3 until an address is present on the command bus. The 

address command and bus valid signal causes the command sequence controller to shift to 

state 0. Notably, if the address command is also a valid address, the command sequence 

controller will shift from state 0 to state 1 on the next clock cycle. 

As mentioned above, all output signal adjustments (except system reset) are made 

only when the command sequence controller is in state 3. This discussion refers to a 

command that sets either register generically as a "register command" since the pulse width 

and repetition period registers operate identically. When a valid register command sets the 

pulse width to zero, the command sequence controller immediately clears the enable output 

signal, thus immediately stopping tactile stimulus. Typically, a register command is 

received that does not match the current register value. This register mismatch triggers two 

actions to occur simultaneously. First, it clears the enable output signal, causing the Tactor 

Power Controller to clear its counters in preparation for a change in wave shape parameters. 

In addition, the register latch signal is produced, ordering the appropriate register to lock the 

commanded wave parameter into the storage register. As soon as the new register value has 

been latched, the register-difference flag changes to indicate the values now match. This 

change in the register-difference flag clears the latch signal and sets the output enable signal, 

causing the Tactor Power Controller to restart wave shape generation with the new wave 

shape parameters. In the event that a register command is received that matches the current 

register value, the latch signal is not needed and the output enable signal does not cycle. 
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Effectively, the matching register command is ignored since it provides no change to the 

current operating condition. 

5. Address Comparator 

The address comparator provides indication when the valid command byte is an 

address command that matches either the address reference or the all call address. Input to 

the address comparator comes from the command bus and the address held in the address 

reference. The address comparator produces the valid address signal that is used by the 

command sequence controller. Table 11 summarizes the signals used and produced by the 

address comparator. 

Address Comparator Input And Output 

Input 
Signal 

command 
bus 

address 

Source 

data latch 

address reference 

Output 
Signal 

valid address 

Destination 

command sequence 
controller 

Table 11. Summary of Signals for the Address Comparator. 

6. Address Reference 

The address reference maintains the address assigned to the attached tactor. The 

input source for the prototypical implementation comes from external jumper connections 

on the TIC. The output is a buffered reflection of the settings. Table 12 summarizes the 

signals used and produced by the address reference. 
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Address Reference Input And Output 

Input 
Signal             Source 

Output 
Signal            Destination 

input address address input pads address address comparator 

Table 12. Summary of Signals for the Address Reference. 

7. Pulse Width Register 

The pulse width register stores the most recent pulse width setting received by the 

TIC.   This setting is used by the Tactor Power Controller module to create the stimulus 

waveform.  The pulse width register receives input from the command bus, a latch signal 

from the command sequence controller, and the system reset.   The register produces an 

output pulse width value used by the pulse width down counter and a pulse width difference 

signal used by the command sequence controller. Table 13 summarizes the signals used and 

produced by the pulse width register. 

Pulse Width Register Input And Output 

Inj 

Signal 
DUt 

Source 
Out 

Signal 
put 

Destination 

command 
bus* 

data latch pulse width 
value 

pulse width down 
counter 

latch command sequence 
controller 

pulse width 
difference 

command sequence 
controller 

reset system 

* only the bit positions representing the embedded register value 

the stor 

output i 

Table 13. Sum 

The pulse widt 

ed six-bit valu 

s used by the c 

mary of Signals for the Pulse Width Register. 

ti register continuously provides a difference signal indicatin 

z is different from the lowest six bits on the command bu 

ommand sequence controller to regulate the latch signal and 
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waveform generation by the Tactor Power Controller. When a latch signal is received from 

the command sequence controller, the pulse width register locks the timing value held in the 

lowest six bits of the command bus into its storage register. When latching is complete, the 

difference signal indicates a match, providing a feedback signal to the command sequence 

controller. When a reset signal is received, the pulse width register clears all output bits to a 

logic "0." 

8. Repetition Period Register 

The repetition period register stores the most recent repetition period setting received 

by the TIC. This setting is used by the Tactor Power Controller module to create the 

stimulus waveform. The repetition period register receives input from the command bus, a 

latch signal from the command sequence controller, and the system reset. The register 

produces an output repetition period value used by the repetition period down counter and a 

repetition period difference signal used by the command sequence controller. Table 14 

summarizes the signals used and produced by the repetition period register. 

Repetition Period Register Input And Output 

Signal 
In DUt 

Source 

Out 
Signal 

put 
Destination 

command 
bus* 

data latch repetition 
period value 

repetition period 
down counter 

latch command sequence 
controller 

repetition 
period 
difference 

command sequence 
controller 

reset system 

* only the bit positions representing the embedded register value 

Table 14. Summary of Signals for the Repetition Period Register. 
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The repetition period register continuously provides a difference signal indicating 

when the stored six-bit value is different from the lowest six bits on the command bus. This 

output is used by the command sequence controller to regulate the latch signal and to reset 

waveform generation by the Tactor Power Controller. When a latch signal is received from 

the command sequence controller, the repetition period register locks the timing value held 

in the lowest six bits of the command bus into its storage register. When latching is 

complete, the difference signal indicates a match, providing a feedback signal to the 

command sequence controller. When a reset signal is received, the repetition period register 

clears all output bits to a logic "0." 

9. Power Control Logic 

The power control logic component controls implementation of the tactile stimulus. 

Input to the power control includes an enable output signal, a pulse-width-equals-zero 

signal, and a repetition-period-greater-than-one signal. The power control logic produces an 

enable power signal, a clear counter signal, and a load counter signal. Table 15 summarizes 

the signals used and produced by the power control logic. 
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Power Control Logic Input And Output 

Input 
Signal 

enable output 

pulse width 
equals zero 

repetition 
period 
greater than 
one 

Source 

command sequence 
controller 

pulse width down 
counter 

repetition period 
down counter 

Output 
Signal 

enable power 

clear counter 

load counter 

Destination 

power oscillator 

pulse width down 
counter, repetition 
period down counter 

pulse width down 
counter, repetition 
period down counter 

Table 15. Summary of Signals for the Power Control Logic. 

When the enable input signal from the command sequence controller is not enabled, 

the power control logic provides a clear signal to both down counters. The clear signal 

locks both counters at zero. When a pulse-width-equals-zero signal is present, the power 

control logic maintains the enable-power at logic "0," causing the power oscillator to block 

the oscillation signals from reaching the current switching network. When the repetition- 

period-greater-than-one signal is low, the power control logic signals the down counters to 

reload the stored register values on the next clock cycle. 

10. Power Oscillator 

The power oscillator controls transmission of the signals that drive the switches in 

the current switching network. Input to the power oscillator is an enable output signal and 

the oscillation frequency. The power oscillator produces the signals that enable the current 

switching network to create the bi-directional current for the attached tactor. Table 16 

summarizes the signals used and produced by the power oscillator. 

38 



Power Oscillator Input And Output 

Input 
Signal 

enable power 

oscillation 
frequency 

Source 

power control logic 

clock divider 

Output 
Signal 

power switch 
setl 

power switch 
set 2 

Destination 

current switching 
network 

current switching 
network 

Table 16. Summary of Signals for the Power Oscillator. 

The enable power signal controls the passage or blocking of the oscillation signals. 

When enable power is high, the power oscillator passes the oscillation frequency signals to 

the current switching network causing the tactors to vibrate. When enable power is low, the 

oscillation signals are blocked and there is no tactile stimulation. The oscillation frequency 

is complemented to provide alternating signals that produce the bi-directional switching 

characteristic needed for the current switching network. 

11. Pulse Width Down Counter 

The pulse width down counter provides the timing that defines the activation interval 

for the tactor. Input to the pulse width down counter is the stored pulse width value, a load 

counter signal, a clear counter signal, and the counter clock. The pulse width down counter 

produces the pulse-width-equals-zero signal. Table 17 summarizes the signals used and 

produced by the pulse width down counter. 
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Pulse Width Down Counter Input And Output 

Input 
Signal             Source 

Output 
Signal             Destination 

pulse width 
value 

pulse width register pulse width 
equals zero 

power control logic 

count clear power control logic 

count load power control logic 

clock clock divider 

Table 17. Summary of Signals for the Pulse Width Down Counter. 

When the count clear signal is present, the pulse width down counter immediately 

clears its count to zero and produces the pulse-width-equals-zero signal. The count clear 

signal takes precedence over all other inputs. When the count load signal is present, the 

counter loads the value that is stored in the pulse width register on the next clock cycle. The 

clock signal is provided by the 62.5 Hz output of the clock divider. 

12. Repetition Period Down Counter 

The repetition period down counter provides the timing that defines the repetition 

interval for the tactor. Input to the repetition period down counter is the stored repetition 

period value, a load counter signal, a clear counter signal, and the counter clock. The 

repetition period down counter produces the repetition-period-greater-than-one signal. 

Table 18 summarizes the signals used and produced by the repetition period down counter. 
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Repetition Period Down Counter Input And Output 

Input 
Signal 

repetition 
period value 

count clear 

count load 

clock 

Source 

repetition period 
register 

power control logic 

power control logic 

clock divider 

Output 
Signal 

repetition 
period greater 
than one 

Destination 

power control logic 

Table 18. Summary of Signals for the Repetition Period Down Counter. 

When the count clear signal is present, the repetition period down counter 

immediately clears its count to zero and clears the repetition-period-greater-than-one signal. 

The count clear signal takes precedence over all other inputs. When the count load signal is 

present, the counter loads the value that is stored in the repetition period register on the next 

clock cycle. The clock signal is provided by the 62.5 Hz output of the clock divider. 

13. Clock Divider 

The clock divider uses a 14-stage counter to generate the frequency signals for tactor 

oscillation and proper down counter timing. Input to the clock divider is from the system 

clock and the reset signal. Output from the clock divider includes signals at 250 Hz, 125 

Hz, and 62.5 Hz. The 1 MHz system clock is divided by two at each stage of the clock 

divider. Table 19 summarizes the signals used and produced by the clock divider. 
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Clock Divider Input And Output 

Input 
Signal                   Source 

Output 
Signal             Destination 

clock clock input 62.5 Hz pulse width down 
counter, repetition 
period down counter 

reset System 125 Hz power oscillator 

250 Hz power oscillator 

Table 19. Summary of Signals for the Clock Divider. 

F. STRUCTURAL COMPONENT DESIGN 

After completing the behavioral design, each component was converted to a circuit 

using logic gates. Most of the design conversion was very straightforward using the digital 

design techniques described in Reference 1. To ensure proper operation of the state 

machine in the command sequence controller, many of the advanced state-machine design 

techniques presented in Reference 8 were used. 

The structural design process was performed in two distinct steps, basic structural 

implementation and component optimization for minimum power and size. The initial 

structural designs were fully tested using Verilog® models; the model source code is 

included in Appendix A. The optimized structural designs were iteratively developed and 

tested using SPICE. The final circuit schematics are included in Appendix B and the SPICE 

models are included in Appendix C. 

The circuit optimization techniques are illustrated below and the design of each 

component is described in the following subsections. Specific optimization efforts are 

discussed with each affected component. 
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1. Structural Circuit Optimization 

Two methods used to reduce the power consumption and physical layout area are 

logic function minimization and negative logic. Function minimization uses logic analysis 

to determine the smallest sum-of-products equation to realize a given function. Negative 

logic results in reduced power consumption by reducing the total number of transistors. 

Both techniques require less layout area on the microcircuit since they result using fewer, 

smaller logic components. Figure 13 illustrates two possible structural implementations of 

the address comparator. The circuit on the left uses conventional logic while the circuit on 

the right makes extensive use of negative logic. Table 20 summarizes the reduction in 

layout area, power consumption, and propagation delay. A very noticeable advantage of 

using negative logic is the improved signal propagation speed. The improved response time 

comes primarily from reducing the number of transistors in the signal path. 

Figure 13. Alternate Structures for Realizing the Address Comparator. 
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Area [^im2] Transistors Delay [nS]* 

Conventional Logic 29,500 128 2.96 

Negative Logic 25,900 112 1.88 

Difference 3,600 16 1.08 

% Difference 12.2% 12.5% 36.5% 

* Delay time was calculated using SPICE to simulate the actual CMOS 
FET implementation of each circuit. 

Table 20. Comparison of Alternate Logic Designs. 

2. Twelve-Bit Input Shift Register 

The twelve-bit shift register consists of twelve D-flip/flops wired in series. All 

flip/flops share a common clock signal that is driven directly from the input clock signal. 

The system reset drives the clear signal for the lowest two D-flip/flops. The highest ten 

flip/flops are cleared by either the system reset or the partial clear signal that comes from the 

input validity checker. The schematic for the optimized circuit is included as Figure 99 of 

Appendix B. 

3. Eight-Bit Data Latch 

The eight-bit data latch consists of eight D-flip/flops wired in parallel. All flip/flops 

share a common latch signal provided by the input validity checker. The system reset drives 

the clear signal for all of the D-flip/flops. The schematic for the optimized circuit is 

included as Figure 100 of Appendix B. 

4. Input Stream Validity Check 

The input stream validity checker consists of a packet-format section, latch-signal 

driver, bus-data-valid driver, and partial-clear driver. The packet-format section determines 

if the stream of input bits is properly formatted by ANDing the two stop bits, the parity 
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indicator, and the complement of the start bit. The parity indicator is simply an XOR of all 

data bit positions with the parity bit position. The latch signal is created when the format is 

correct and the clock signal is low. The bus data valid signal is driven by a D-flip/flop that 

stores the format signal on the latch signal upward transition. The bus data valid signal is 

cleared by either the system reset or when a "0 1" logic combination is detected in the two 

highest bit positions of the shift register and the bus data valid signal is set. The partial clear 

signal is generated when the packet format is correct and the bus data valid signal is set. 

The schematic for the optimized circuit is included as Figure 101 of Appendix B. In 

hindsight, it may have been more efficient to use an S/R latch for the data bus valid signal. 

This option was not considered during the design evaluation but should be attempted in the 

next TIC version. 

5. Command Sequence Controller 

The command sequence controller consists of a state machine, two register latch 

drivers, and the enable output S/R latch. The operating state is stored in a pair of D- 

flip/flops. The logic that drives the state machine was derived using transition and output 

analysis detailed in Chapter 7 of Reference 8. The implemented transition logic prevents 

hazards and race conditions. The design also recovers from any occurrence of the undefined 

state 2. The pulse width and repetition period latch signals are driven by the receipt of a 

register command that does not match the currently stored value. The enable output latch is 

set any time the state machine is in state 3 and there is a valid register command on the 

command bus. The enable output latch is reset for any change in the pulse width or 

repetition period register values. The enable output signal is also immediately cleared when 
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a system reset is detected or when a valid, zero pulse width command is detected.   The 

schematic for the optimized circuit is included as Figure 102 of Appendix B. 

6. Address Comparator 

The structural design for the address comparator consists of an all call detector and 

an equality test for the reference address. The all call detector simply indicates when the all 

call command, "0111111 1," is present on the command bus. The address equality test 

uses an XNOR for each bit position to determine if the command bus matches the provided 

address reference.   The schematic for the optimized circuit is included as Figure 103 of 

Appendix B. 

7. Address Reference 

The structural design for the address reference in this initial prototype consists 

simply of buffers from the TIC input pins. No schematic diagram is included for this 

component. 

8. Pulse Width Register 

The structural design for the pulse width register consists of six D-flip/flops wired in 

parallel and an equality test to indicate a difference between the command bus and the 

stored pulse width value. All flip/flops share a common latch signal provided by the 

command sequence controller. The system reset drives the clear signal for all of the D- 

flip/flops. The equality test uses an XOR for each bit position to determine if the command 

bus differs from the stored pulse width value. The schematic for the optimized circuit is 

included as Figure 104 of Appendix B. 
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9. Repetition Period Register 

The structural design for the repetition period register consists of six D-flip/flops 

wired in parallel and an equality test to indicate a difference between the command bus and 

the stored repetition period value. All flip/flops share a common latch signal provided by 

the command sequence controller. The system reset drives the clear signal for all of the D- 

flip/flops. The equality test uses an XOR for each bit position to determine if the command 

bus differs from the stored repetition period value. The schematic for the optimized circuit 

is included as Figure 105 of Appendix B. 

10. Power Control Logic 

The structural design for the power control logic consists of a single inverter. This 

component routes the appropriate signals between other components in the TIC circuit. The 

output from the two down counters was modified to eliminate the need to invert their signals 

before sending them to the other components. The schematic for the optimized circuit is 

included as Figure 106 of Appendix B. 

11. Power Oscillator 

The structural design for the power oscillator consists of a dual-path switch and four 

signal amplifiers. The dual-path switch will either block or pass the oscillation frequency 

and its complement. When the oscillation signal is passed, the four drivers provide 

sufficient current to activate the switch pairs in the current switching network. The 

schematic for the optimized circuit is included as Figure 107 of Appendix B. 

12. Pulse Width Down Counter 

The structural design for the pulse width down counter consists of six D-flip/flops 

configured as a down counter and a comparison circuit to indicate when the counter value is 
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not equal to zero. The down counter has an input selector that shifts operation between 

down counting and loading the value stored in the pulse width register. All flip/flops share a 

common clock signal provided by the clock divider as a timing reference. The counter 

output is continuously tested to indicate when the value is not equal to zero. The counter 

reset circuit includes a function that stops the down counter when it reaches zero. The 

counter is also reset by the count clear signal from the power control logic. The schematic 

for the optimized circuit is included as Figure 108 of Appendix B. 

13. Repetition Period Down Counter 

The structural design for the repetition period down counter consists of eight D- 

flip/flops configured as a down counter and a comparison circuit to indicate when the 

counter value is not greater than one. The down counter has an input selector that shifts 

operation between down counting and loading the value stored in the repetition period 

register. When loaded, the repetition period value is stored in the upper eight bits of the 

counter and the lowest two bits are set to zero. All flip/flops share a common clock signal 

provided by the clock divider as a timing reference. The combination of the two extra bit 

positions and the same clock frequency causes the repetition period down counter to operate 

at a time interval that is four times longer than that of the pulse width down counter. The 

counter output is continuously tested to indicate when the value is not greater than one. The 

counter reset circuit includes a function that stops the down counter when it reaches zero. 

The counter is also reset by the count clear signal from the power control logic. The 

schematic for the optimized circuit is included as Figure 109 of Appendix B. 
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14. Clock Divider 

The structural design for the clock divider consists of fourteen D-flip/flops 

configured as an up counter. All flip/flops share a common clock signal that is driven 

directly from the input clock signal. The up counter continuously acts as a frequency 

divider that provides two oscillation frequencies and the down counter timing reference. 

The available oscillation frequencies are 250 Hz and 125 Hz. The down counter timing 

reference is 62.5 Hz. The system reset drives the clear signal for all of the D-flip/flops. The 

schematic for the optimized circuit is included as Figure 110 of Appendix B. 

G. ADVANCED DESIGN FEATURES 

Several features of the initial TIC design provide enhanced system performance. 

The first two features were included as enhancements to the minimum design specification 

because they provide improved functionality while coupling easily with the conceptual 

operations. The third advanced feature, an onboard reset, was included to ensure that the 

TIC establishes a consistent initial condition when it is first energized. The final two 

features were added for chip testing and evaluation with various tactile transmitters. 

1. Multiple Command Packet Addressing 

The operating-state transition definitions allow a command byte stream that includes 

multiple TIC addresses. This feature allows a register command to be transmitted to several 

tactors simultaneously. This capability can be used to reduce the volume of data transmitted 

on the serial communication wire from the micro-controller. When commands are sent to 

numerous tactors in this fashion, all tactors activate with a single, synchronized wave-shape. 
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2. All-Call Address 

The command value "0 1 1 1 1 1 1 1" is reserved as an All-Call address that 

produces a valid address response for all TICs. This feature is primarily intended to enable 

rapid termination of all tactile stimuli. This address can also be used to test the entire 

communication array. 

3. Dual Reset Circuit 

The analog response of the CMOS circuit components is used to produce an initial 

reset signal for the first 200 nS of TIC operation. The initial reset forces all TIC elements to 

establish a consistent condition when the circuit is energized. Included in the system-reset 

circuit is a selectable, low-voltage reset. This reset element is included to protect the system 

from erratic response caused by low input voltage. The low voltage feature can be disabled 

using an external TIC jumper, if necessary, for circuit testing. 

4. Selectable Oscillator Frequency 

An input jumper allows selection between the two tactor-oscillation frequencies: 125 

Hz and 250 Hz. This selection allows the TIC to be used with different tactors. These two 

frequencies were selected because they are available in the clock divider and because they 

reasonably match the input requirements of the tactors being considered for use in the 

prototype system. 

5. Selectable Address 

By including the TIC address as an external input, a single TIC design can be used 

for all tactors in the communication array. This feature allows the greatest flexibility for 

prototype testing, since it allows a single "intelligent tactor" to function in every possible 
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array position. A similar approach will likely be used in future versions to limit production 

and inventory requirement to a single TIC/tactor assembly. 

H. ANIMATION OF TACTOR INTERFACE CHIP OPERATIONS 

As a tool to explain TIC response to command bytes, an operating animation was 

developed that illustrates the changes that occur in the TIC registers and counters as a string 

of commands is received. A more detailed explanation of the animation program is 

contained in Appendix D. 

1. TIC Visual Representation 

Figure 14 shows the graphical representation of two intelligent tactors in a tactile 

array. The dark gray rectangles represent the tactors. Each is labeled with its address value. 

The number at the bottom of each column represents the register value for the pulse width or 

repetition period. The column represents the value in the down counter associated with each 

register. The horizontal bar across the bottom represents simulation time and proceeds 

steadily from left to right. The rectangular bubbles above the time line are commands that 

will be issued when the time reaches their position. 
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Figure 14. Tactile Interface Animation Basics. 

2. Animation Color Scheme 

Figure 15 shows the animation in progress. The tactor rectangles change in color to 

represent the state of the Command Decoder and Controller. When a valid address is 

received, the TIC shifts to state "B" and the tactor color changes to yellow. When a register 

command is received by a tactor in state "B," the register is set to the commanded value, the 

TIC shifts to state "C," and the tactor color changes to red. When any address is received by 

a tactor in state "C," the TTC shifts to state "A" and the tactor color changes back to gray. 

The pulse width down counter value is represented by a green column in the area below the 

"PW" label. The repetition period down counter value is represented by a blue column in 

the area below the "RP" label. During operation, the green column drops four times as fast 

as the blue column. As long as the green pulse-width column is not zero, the associated 

tactor vibrates.   When the green pulse-width column reaches zero, the vibration stops. 
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When the blue column is not greater than one, both down counters load the stored register 

value. Thus, when a zero repetition period is assigned, the pulse width column reloads on 

every clock pulse and does not decrease in value. When the repetition period register is 

greater than zero, both counters decrease until they are reloaded at the repetition period 

down counter value of one. 

Tactile Interface Demonstration 
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Figure 15. Tactile Interface Animation in Progress. 

53 



54 



IV. TACTOR INTERFACE CHIP VLSI IMPLEMENTATION 

In preparation for the VLSI implementation of the Tactor Interface Chip, the specific 

system priorities must be examined. These priorities then work together to define the 

CMOS FET size. After determining the optimum FET size for the application, the elements 

must be built to support basic logic functions. These logic elements are then combined to 

form the larger components. The components are then assembled into the functional 

modules and, finally, into the composite system. After the chip input and output are added, 

the chip is ready for comprehensive testing and fabrication. This chapter covers the entire 

VLSI implementation process. 

A. COMPETING VLSI DESIGN CONSTRAINTS 

During VLSI design, many requirements are juxtaposed. High speed transistors are 

physically larger and consume more power. Conversely, minimum sized transistors require 

the least amount of power but their speed may be insufficient when driving large 

interconnect lines or numerous down-stream components. These factors were balanced to 

meet the design requirements of the Tactor Interface Chip. 

1. Size 

Funding limits forced microchip size to be a primary constraint. Chip size primarily 

bounds the number of circuit components because component interconnections consume the 

majority of VLSI layout area. This sharply limited circuit complexity and fundamentally 

affected many of the design decisions made in the previous chapter. 

2. Power 

Each TIC must draw minimum current from the battery-powered system since the 

tactile interface is a stand-alone bridge between the information source and the human user. 
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Using the smallest possible CMOS FETs throughout the circuit minimizes total power 

consumption. Aggressively simplifying the logic structure further reduced power 

requirements while increasing response speed. 

3. Speed 

Small transistor size adversely influences response time. Minimum transistor size is 

sufficient at a 1 MHz clock speed unless long interconnects or several components must be 

driven. Individual elements were resized based on their output loading. 

B. CMOS FET TRANSISTOR SIZING 

1. Determining PFET Size From NFET Size 

Based primarily on power considerations, minimum size CMOS FETs were 

examined to determine their suitability for the TIC application. Beginning with the absolute 

minimum transistor width of 3 Jim, the response of an inverter was evaluated. When sizing 

FETs the mobility of the charge carriers must be considered. PFET width must be 

significantly larger that NFET width to balance system output since the majority carrier for 

NFETs are electrons (high mobility) and the majority carriers for PFETs are holes (low 

mobility). Figure 16 shows the effect of using different size PFETs with a minimum size 

NFET. The ideal sizing produces an inverted output of 2.5 volts as the input sweeps 

through 2.5 volts. By examining Figure 16, a PFET width of 7 \im most closely achieves 

the ideal condition. However, a more conventional PFET width to NFET width ratio of 2.0 

was used for this VLSI layout; making PFETs 6 \\m wide. Checking the response in Figure 

16 shows that a width of 6 |im is still very close to the ideal response. 
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PFET Size Evaluation for 3 um NFET 

PFET width 
o 4 urn 
x 5 um 
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Figure 16. Inverter Response for Various PFET Widths. 

2. Basic Response Timing 

Having determined the PFET size needed with a minimum size NFET, response 

timing had to be verified to ensure the system would transmit the signals quickly enough to 

support a 1 MHz clock speed. This measurement was accomplished by simulating a series 

of inverters and measuring transmission delay between two inverters near the series end as 

illustrated in Figure 17. Figure 18 shows the inverter response for the delay circuit and 

Table 21 provides the actual delay values calculated from the simulation. 
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Figure 17. Delay Circuit for Measuring Inverter Response. 

Inverter Transmission Delay 

0.4 0.6 0.8 1.2 1.4 
time [nS] 

Figure 18. Inverter Transmission Response for Delay Circuit. 

Output Transition Delay 

High to Low 0.2564 nS 

Low to High 0.2240 nS 

Table 21. Inverter Delay Summary. 
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B. LOGIC ELEMENT DESIGN 

Using a 6 |om PFET width and 3 urn NFET width, the basic logic elements were 

designed to support VLSI implementation of the structural TIC design. Appendix E 

contains the specific design and evaluation data regarding all logic elements. Table 22 

presents a summary of logic element response for each design. The delay values were 

obtained while simulating an output loading of 0.1 pF; equating to 4 down-stream 

components. When compared to the 500 nanosecond half-cycle of the 1MHz clock, even the 

worst transmission delays allow numerous components to be connected in a series layout 

while still providing adequate stabilization time. 

Component Transistors Slowest Delay Peak Power 

Inverter 2 0.83 nS 2.1 mW 

2-input NAND 4 1.33 nS 2.3 mW 

3-input NAND 6 1.69 nS 2.7 mW 

4-input NAND 8 2.22 nS 2.7 mW 

2-input AND 6 1.31 nS 2.3 mW 

2-input NOR 4 1.51 nS 1.6 mW 

3-input NOR 6 2.10 nS 1.2 mW 

2-input OR 6 1.47 nS 2.5 mW 

2-input XOR 12 1.68 nS 3.2 mW 

2-input XNOR 12 1.68 nS 3.2 mW 

D flip-flop with 
nClear 

24 3.42 nS 3.4 mW 

Table 22. Component Design Summary. 

C. COMBINED LOGIC COMPONENT CONSTRUCTION 

The storage registers, down counters, shift registers, and other components were 

developed using the structural designs presented in Appendix B. The logic element layouts 
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were combined to create rows of elements with a common power and ground line. This 

configuration produced the most compact layout of the larger components. The logic 

elements were arranged to provide the shortest connection distance between elements and 

signals were routed primarily on the first metal layer or the polysilicon layer. Signals that 

extended beyond adjoining elements were typically routed vertically on the second metal 

layer, then routed horizontally on the first metal layer, and again vertically on the second 

metal to their destination. This routing direction segregation reduced wasted space between 

component rows and helped to maintain a very tight layout. 

E. MODULE ASSEMBLY 

The components were arranged on the VLSI layout area to minimize the distance 

between signal generation and signal use. Sets of signals were routed together to maintain 

an orderly structural layout. The internal command bus was routed between the components 

that accessed its values, minimized the bus size and its drive loading. The modules were 

built to obtain a consistent length. The modules were then attached to the common power 

and ground buses running vertically along both sides. 

F. INPUT AND OUTPUT CONSIDERATIONS 

Movement of input signals to the TIC and output signals to the current switching 

network required an arrangement of input and output pads. These pads are bonded to tiny 

wires that connect the chip to the DIP package. A power and ground ring encircle the chip 

just inside the connection pads. These rings provide voltage surge protection through diodes 

designed into the I/O pad structure. In addition to the power and ground pads that feed the 

outer rings and the chip components, three pad types are included in this design. 
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A standard input pad is used to translate the data and clock inputs onto the lines 

connecting them to the TIC circuit. These pads are comprised of two inverters that act as a 

signal buffer and amplifier. 

A standard output pad is used to convert the TIC output into a signal strong enough 

to drive the current switches. Again, these pads are made using two inverters that are 

specifically sized to provide the proper amount of current to activate the switching network. 

A custom input pad was developed to act an input jumper signal. The pad was held 

high through a diode and resistor combination, providing a logic "1" to the circuit unless the 

pad was jumped to ground. When this type of pad was grounded, a logic "0" was provided 

to the circuit. These pads were used for creating the address assignment jumpers and the 

frequency and reset selection jumpers. 

G. COMPLETE TACTOR INTERFACE CHIP 

When the pads were all combined with the entire system layout, the TIC was 

complete. Figure 19 shows the layout for the entire TIC. Using the layout map provided in 

Figure 20, the relative size and placement of each component is clearly visible. 
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Figure 19. Completed Tactor Interface Chip VLSI Design. 
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H. COMPREHENSIVE SYSTEM TESTING 

When the entire layout was complete, several simulations were performed on the 

extracted model.   These simulations each ran for approximately one day and generated 

nearly one gigabyte of data. The results presented in Figure 21 illustrate that the TIC circuit 

functions as designed and produces the alternating switch control signals required to drive 

the tactor current network. 
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Figure 21. Simulation Results from the Complete TIC Design. 
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V. PARALLEL PORT DATA MODULATOR 

With the VLSI layout complete and submitted for fabrication, chip testing and 

demonstration became the highest priority. Once fabricated, the most realistic test would be 

to connect the TIC to an actual serial communication line and measure the current switching 

signals produced as a result of issuing command bytes to the TIC. Additionally, an 

apparatus that could drive the TIC in a manner similar to its intended implementation would 

serve as a demonstration platform for the completed tactile interface. 

The general notion of using a standard computer to produce the serial bit stream 

required for TIC operation was appealing for many reasons. The primary motivation for PC 

use was the portability of such a system; system design could allow using any PC, reducing 

system unique equipment to a small hardware component and the tactile array. 

Additionally, the parallel port on a computer closely represents the operation of a 

microprocessor data bus. This similarity to a data bus provides a level of design abstraction 

that would ease adaptation of the command modulator to work with any micro-controller. 

This chapter presents many of the aspects in the development, fabrication, and 

testing of the Parallel Port Data Modulator. After introducing the conceptual design, parallel 

port transfer characteristics and modulator design specifics are discussed. Next, the circuit 

board layout and manufacture for the modulator are included. The command software 

driver is introduced and, finally, system testing and modifications are discussed. 

A. CREATING A SERIAL COMMAND STREAM 

A flexible and effective method to issue commands to the intelligent tactor is to 

write a computer program that presents the byte command to a modulator attached to the 

computer parallel port.   The modulator, shown conceptually in Figure 22, reads the byte 
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presented at the parallel port and latches it into a transmission buffer. The hardware 

interface then signals the computer that the command has been read to allow computer 

processing for the next command byte. The modulator transmits the command using the 

required serial data packet format. TIC synchronization and timing is provided using the 1 

MHz clock. 

Hardware 
Interface 

Data Latch, 
Equality, and 
Parity Logic 

Output Control Data Select 

Figure 22. Command Modulator Conceptual Design. 

B. PARALLEL PORT INTERFACING AND CONTROL 

The parallel port on a computer is used to communicate data one byte at a time to an 

attached peripheral.    Reference  1  contains an extensive description of parallel port 

66 



Communications. The transfer of data through the parallel port is defined by IEEE standard 

1284, "Standard Signaling Method for a Bi-directional Parallel Peripheral Interface for 

Personal Computers." The parallel port consists of 17 signal lines that are divided into three 

categories: data (8 lines), control (4 lines), and status (5 lines). The remaining eight lines are 

ground connections. Table 23 summarizes the signals with their descriptions and connector 

pin assignments. Figure 23 illustrates the parallel port connector and pin numbering scheme 

as viewed on the back of a computer. 

Category Name Pin Direction Description 
Data dataO 2 In/Out Active high. Data transmission 

lines. Operate only in output 
direction for some communication 
modes. 

datal 3 
data 2 4 
data 3 5 
data 4 6 
data 5 7 
data 6 8 
data 7 9 

Control nStrobe 1 Out Active low. Indicates valid data is 
on the data lines. 

nAutoLF 14 Active low. Instructs printer to 
automatically insert a line feed for 
each carriage return. 

nlnit 16 Active low. Resets device. 
nSelectln 17 Low signals device it is selected. 

Status nError 15 In Low indicates an error exists. 
Select 13 High indicates device is online. 
PaperEnd 12 High indicates printer is out of 

paper. 
nAck 10 Low indicates last byte was 

received. 
Busy 11 High indicates device is busy. 

Table 23. Standard Parallel Port Signal Definitions and Pin Assignments. 

67 



boooooooooooo 
oooooooooooo 

14 '  25^ 

Figure 23. Parallel Port Connector with Pins Numbered. 

Parallel port data transfer follows a specific procedure for every byte sent to the 

attached peripheral. First, the port status is checked to ensure that the peripheral is not busy 

and no errors are present. The data byte is then placed onto the data pins and the strobe is 

activated to indicate that the data on the data lines is valid. The strobe is held active until an 

acknowledgement is received from the peripheral that indicates data receipt. This process 

continues until all bytes have been successfully transmitted. 

C. MODULATOR DESIGN SPECIFICS 

The hardware interface of the command modulator uses the eight data lines, strobe 

signal, acknowledge signal, and busy status. When the computer presents a byte to the 

modulator, it issues a data strobe. The modulator detects the strobe and activates the busy 

flag to prevent other bytes from being transmitted. Then, the command is latched into the 

buffer and, when the buffer value matches the input command, an acknowledgement signal 

is sent to the computer. The modulator then cycles through the data packet format using an 

internal state machine. Serial bits are placed on the TIC communication bus on the negative 

clock transition to ensure they are stable when latched at the TIC on the positive clock cycle. 

The start bit is transmitted first, followed by the command byte proceeding from the most 

significant bit to the least significant bit.    The parity bit and stop bit are then sent, 

completing the cycle. After the stop bit is sent, the busy signal is cleared to allow the next 

byte to be latched into the modulator buffer. 
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The logic functions for the command modulator were created using Programmable 

Logic Devices. PEEL 18CV8P PLDs were used to implement the logic functions because 

they were available in the research laboratory. The choice to use these chips directly 

influenced the method of implementing the conceptual design shown in Figure 22. The 

design requires the buffer to produce an equality function and parity calculation. The 

equality function triggers the acknowledgment signal that is fed back to the computer. 

Unfortunately, the 18CV8P chips have insufficient logic capacity to perform all of these 

functions on a single chip. In fact, to create a discrete buffer, equality, and parity functions 

requires three individual chips. However, these functions can be realized with two PLDs by 

creating a 4-bit latch that includes partial equality and parity calculations. Using equality 

and parity inputs, the two cascaded chips will perform all three functions. 

A more detailed discussion of the Parallel Port Data Modulator design is included in 

Appendix F.   The appendix contains the Venlog   modeling source files and the ABEL 

logic definitions used to create the required JEDEC format data files for PLD programming. 

D. CREATING A PRINTED CIRCUIT BOARD LAYOUT 

The Parallel Port Data Modulator physical characteristics were generally defined by 

the system goals. The command modulator needed to be a small, self-contained device that 

connected directly to a computer parallel port thus compact board size was a high priority. 

The basic component layout was conceptualized as the PLD programs were being 

developed. Figure 24 illustrates the layout for the command modulator components. The 

system consists of a parallel port connector, four 20-pin DIP sockets, one 8-pin DIP socket, 

a wiring harness connector, and power connections. The complete system measures about 

2V2 inches by 2V2 inches and uses a battery pack of four AA batteries. 
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Figure 24. Parallel Port Modulator Component Layout. 

The PLD logic programs were developed first to ensure the required functions 

would fit on four chips. After the chips performed as required, adjustments to the chip pin 

assignments and design were made to support the desired circuit board layout and to 

simplify signal routing on the board. The signal and power lines were then routed on each 

layer of the two-layer board. Figure 25 and Figure 26 show the layout and routing of the 

manufactured circuit board for the top and bottom layers, respectively. For consistency, 

power and ground were routed exclusively on the bottom layer and data signals were routed 

primarily on the top layer. In hindsight, a better layout plan would have considered the 

solder connections for each component to determine which layer would be best for the 

signal to reach the pad. Soldering was typically easier to perform for bottom-layer signal 

pads because the wiring harness connector and DIP sockets were mounted to the top layer. 
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Figure 25. Parallel Port Modulator Top Layer Routing. 

Figure 26. Parallel Port Modulator Bottom Layer Routing. 
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E. PRINTED CIRCUIT BOARD MANUFACTURING 

Prototype printed circuit boards can be manufactured from a copper-coated insulator 

board by removing the copper from areas around the desired conductors. Two processes 

exist for copper removal: chemical etching and machining. The chemical removal process 

uses a resistive mask to protect the desired conductor areas while immersing the board in a 

chemical to remove the copper in the unprotected areas. The machining process uses a 

digitally controlled milling machine to mechanically remove the copper around the 

conduction paths to isolate the conductor from the remainder of the board. The chemical 

process was used in the first attempts to manufacture the Parallel Port Data Modulator. The 

rather crude masking methods used in the process produced marginal results. The milling 

process was then used with much greater success. 

To produce a circuit board using the machining process, a GERBER data file 

containing the layout and routing data is necessary. The GERBER file is produced using 

circuit board layout software. EasyTrax (ver 2.06) by Protel International Pty. Ltd. was used 

to layout and route the command modulator. When all layout and routing was complete, 

EasyTrax was used to produced GERBER output files for the top and bottom layers. 

A digital milling machine made by LPKF CAD/CAM Systems, Inc. was used to 

produce the circuit board. This milling machine is designed specifically for making 

prototype boards. The CAD/CAM package includes IsoCAM software that calculates 

isolation channels from the GERBER files and drives the milling machine when design 

processing is complete. When manufacturing the board, IsoCAM first prompts the user to 

install a drill bit into the milling spindle to bore the holes for component mounting. Next, 

the appropriate cutter must be installed to produce insulation gaps around all conductors. 
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After the top layer is machined, the board must be flipped and aligned in preparation for 

machining the bottom layer. Figure 27 shows the top layer of the circuit board produced 

using the machining process. Note that the machining process does not remove the copper 

in the unused areas of the board unless specifically required. 

Figure 27. Command Modulator Top Layer after Machining. 

F. PRINTED CIRCUIT BOARD ASSEMBLY 

After fabricating two copies of the circuit board, the connectors and DIP sockets 

were soldered onto each board. It was at this point that the cost of not routing signals to the 

bottom contact pads was fully realized. The parallel port connector was easy to attach since 

the board thickness matches the spacing between the connector solder lugs. By slightly 

elevating each DIP socket, soldering the top-layer connection pads was made easier. On the 

other hand, the plastic edges on the connector for the tactor array wiring harness had to be 

carved to allow access to the soldering pads.   Once the solder connections were made, 
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command modulator assembly was completed by placing the PLDs and crystal oscillator 

into their sockets. Figure 28 shows a completed Parallel Port Data Modulator after full 

assembly. 
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Figure 28. Fully Assembled Command Modulator. 

G. SOFTWARE TO DRIVE THE COMMAND MODULATOR 

For proper operation, the host computer must provide the command bytes to the 

modulator. The C++ programming language was used to write a driver program to facilitate 

issuing commands to the modulator through the parallel port. The program requests an 

input command and waits for a user response. When a response is detected, the program 

places the byte on the parallel port and waits for peripheral acknowledgement. Once 

acknowledgement is received, the program requests another command from the user. The 
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program was written for the DOS operating system to allow use with older computers. A 

more extensive command transmission program description and C++ source code are 

included in Appendix G. 

H. COMMAND MODULATOR TESTING 

After manufacture and assembly, the command modulator was tested to ensure 

proper operation. With an oscilloscope connected to the clock and data lines of the wiring 

harness, the command transmission software was used to issue commands to the tactile 

array. The oscilloscope measured the output waveforms. Figure 29 and Figure 30 show the 

oscilloscope displays after issuing a 19 and a 218 command respectively. The images show 

that the command byte is transmitted in the required serial packet format with the 

communication bus changing value on the negative clock transition. The apparent 

instability of the clock pulses is actually being caused by a noisy data probe. 
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Figure 29. Command Modulator Output for 19 Command. 
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Figure 30. Command Modulator Output for 218 Command. 

I. MODIFICATIONS TO THE MODULATOR DESIGN 

During initial testing of the command modulator, it was discovered that several 

copies of the command packet were being transmitted for each ordered command. This 

system response was a result of the parallel port speed for the computer being used to issue 

commands to the modulator. The modulator was latching, acknowledging, and transmitting 

the command before the computer was able to clear the strobe. This anomaly required 

reprogramming the PLDs to delay command transmission until the computer cleared the 

strobe signal. 
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VI. TACTOR INTERFACE CHIP TESTING 

Once the Parallel Port Data Modulator was complete, chip testing should have 

centered on wiring the TIC to receive power and commands from the modulator. When the 

four chips were received from fabrication, they were first inspected using a microscope to 

examine the general chip condition and ensure the provided pin assignments were accurate. 

The chips were then operationally tested using the command modulator but no output was 

produced. In order to identify the reason for improper operation, the complete circuit was 

simulated again. When the design simulated properly, the chips were more closely 

examined using a scanning electron microscope and some potential manufacturing problems 

were identified. Charged electron imaging was then attempted without success. Further 

testing is not planned for this chip. 

A. VLSI CHIP RECEIPT FROM FABRICATION 

Four copies of the TIC were fabricated and bonded into 28-pin DIP packages. The 

chips were mounted in anti-static foam and protected by a hinged plastic box. No damage 

was evident to the chips due to the packaging and shipping processes. The TICs came with 

a data sheet indicating the pin assignments that resulted from packaging. Figure 31 

represents the TIC schematic with the signals associated to each pin. 
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Figure 31. Tactor Interface Chip Pin Assignments. 

B. VISUAL INSPECTION 

The four chips received from fabrication were inspected using a microscope to 

examine the general chip condition and ensure the provided pin assignments were accurate. 

The stated pin assignments were correct, but microscopic inspection of the chips revealed 

several dark areas that were initially thought to be dust on the protective scratch coat. A 

more detailed visual inspection subsequently indicated that some of the impurities are in the 

same fabrication layer as the aluminum conductors and may even extend into the silicon 

transistor areas. 

C. OPERATIONAL CHECK USING COMMAND MODULATOR 

After confirming pin assignments, a wire wrap test circuit was constructed to mate 

the TIC to the command modulator. All connections were traced and verified prior to 

energizing this single-element tactile array. When power was applied, the clock signal was 

measured at the TIC and found to be correct. The serial bus was then monitored as 

command bytes were transmitted to the intelligent tactor.   Each command packet was 
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received as expected but the TIC failed to provide the anticipated response. After 

confirming the system setup and verifying all signal paths, several more commands sets 

were issued. Still, no response was obtained from the mounted TIC. A second TIC was 

mounted to determine if the first chip was faulty. The same series of tests were performed 

and there was no response from the second TIC. 

D. COMPLETE SYSTEM RESIMULATION 

One likely cause of circuit failure could have been a faulty design. Rather than 

continue with operational testing a plan was made to completely verify the TIC circuit again 

to determine if a design oversight had been missed in the original testing. All original tests 

were performed again on the extracted VLSI design. Every aspect of the circuit responded 

exactly as designed. Additional tests were conducted to precisely simulate the series of 

commands used to operationally test the TIC. Again, the simulation responded exactly as 

specified. 

E. SCANNING ELECTRON MICROSCOPE INSPECTION 

Access to a scanning electron microscope was obtained to investigate the TIC 

response failure. During careful examination of all chips, several manufacturing problems 

were detected on every chip. The left image of Figure 32 shows contamination that may be 

causing a short between power and ground. Spectral analysis of this area indicated that the 

contaminant contained high levels of sulfur. The right image of Figure 32 shows particulate 

contamination that might be shorting between the signals on the TIC internal command bus. 

Figure 33 shows areas of aluminum oxidation. Figure 34 shows a metalization failure in the 

top aluminum interconnect layer that causes the metal to extend beyond its design channel. 

Finally, Figure 35 shows some of the many impurities peppered throughout the entire chip 
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layout. While these manufacturing problems may not be the direct cause of chip failure, 

they certainly indicate questionable fabrication cleanliness. The real concern is not the areas 

that were examined using the scanning electron microscope. The microscopic examination 

only shows problems in the visible layers at the top of the silicon wafer. If these images 

reflect general fabrication quality, the most likely cause of chip inoperability is similar 

impurities and failures in the lower fabrication layers. 

Figure 32. Scanning Electron Microscope Images of Potential Shorts. 

Figure 33. Scanning Electron Microscope Images of Aluminum Oxidation. 
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Figure 35. Scanning Electron Microscope Images of Embedded Impurities. 

F. CHARGED ELECTRON IMAGING 

Charged electron imaging is a method for observing the microchip using a scanning 

electron microscope while the chip is energized to determine operating conditions. The 

areas of the chip that are at a higher potential appear much brighter than the areas that are 

grounded. This examination provides a visual method for circuit analysis with respect to 

operations and points of failure. A special circuit was built to clock one bit per second into 

the TIC to support charged electron imaging. When the chip was tested using this method, 

there was no visible contrast between the power and ground points.   This indicates the 
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inspection procedure was more complex than initially understood. Further, investigation by 

the microscope technician is in progress to support this testing in the future. 

G. FURTHER TESTING 

Very little further testing is expected since the TIC chip is not currently funded 

research. The next generation chip should be constructed with various test points to allow 

evaluation of circuit performance at different locations within the VLSI layout. 
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Vn. REVISIONS TO THE COMMUNICATION PROTOCOL 

The basic command structure is very efficient for communicating the essential 

information for the tactile interface. Now that the first iteration is complete, the command 

structure must be reevaluated for improvement with a second-generation tactile interface. 

Many additional instructions could be included in the basic TIC control language. A 

redefinition of the command structure will also require significant changes to the TIC 

design. This chapter presents the limitations of the current command structure and suggests 

a revised command structure that will improve system response and flexibility. 

A. EVALUATION OF REGISTER COMMAND PAIRS 

The current command structure produces continuous tactor activation for any wave- 

shape parameter pair that has a pulse width greater than or equal to four times the repetition 

period. The duplication of response for different register values is an' area available for 

command improvement. 

A constant resolution of 16 mS for pulse width and 64 mS for repetition period is 

easy to implement with the first-generation down counter scheme.   However, this timing 

method produces an extremely wide difference for percentage wave-shape resolution. 

When operating with the maximum repetition period, the wave shape has 64 different 

selections for duty cycle between 0 and 25 percent and a duty cycle resolution of 0.4 

percent. However, when operating with a one-half second repetition period, the wave shape 

can assume 32 different duty cycles ranging from 0 to 100 percent with a duty cycle 

resolution of 3.1 percent.    As repetition period continues to decrease, the duty cycle 

resolution increases exponentially.   A more consistent duty cycle resolution would better 

represent the desired physical stimulation. 
83 



A command structure based on duty cycle rather than pulse width would improve 

both concerns in the preceding paragraphs. Duplicate response to command pairs would 

still occur once for 100 percent activation at each value of repetition period but all other 

duplication would be limited to the minimum resolution for the controlling counter. A duty 

cycle parameter would also define a consistent duty cycle resolution at all repetition period 

values. Use of 16 discrete duty cycles would provide a consistent 6.25 percent resolution 

while 32 duty cycle values would provide 3.125 percent resolution. 

B. TACTILE ARRAY SIZING 

The original target tactile interface included forty tactors. The concept of using 

multiple address values for each tactor was considered as a viable method of improving 

system response by defining group identifiers in addition to the unique individual address. 

Subsequent consideration of potential tactile interface applications supports forty tactors as 

nearly the maximum number possible rather than an initial estimate. At the 1 MHz serial 

transfer speed, the need for group addressing schemes is not critical since thirty three-byte 

command sets can be issued in less than 1 mS. From these two assertions, the choice of 126 

individual tactor addresses is too high and consumes too many of the 256 available 

commands. Use of 63 individual addresses and one "all call" is sufficient for all expected 

tactile interface applications. 

C. PROGRAMMABLE OSCILLATION FREQUENCY 

During the course of this research, the expected tactile transmitter has been changed 

three times. Each new tactor operates best at a specific oscillation frequency and drive 

current. The range of operating frequencies has been from 100 Hz to 250 Hz. Although the 

current TIC design supports two discrete frequencies, a TIC capable of altering the 
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oscillation frequency using a command would be much more flexible for evaluating an array 

of currently undefined tactors. 

D. COMMANDED RESET 

In certain circumstances, it might be beneficial to force a system reset for an 

individual or group of tactors. A dedicated reset command allows an explicit reset to be 

executed by any tactor interface chip. 

E. REVISED COMMANDED STRUCTURE 

The command structure defined in Table 24 below balances the concerns in the 

preceding sections with the 256 available byte commands. 

Command Word New Meaning 

00000000 Reserved — TIC bus idle condition 

00000001 Explicit System Reset. 

00000010 
to 

000011 1 1 

Unused commands available for future 
use (14 values). 

00010000 
to 

00011 1 1 1 

Oscillation Frequency (16 discrete 
values). 

00100000 
to 

00111111 

Duty Cycle (32 values ranging from 
3% to 100%). 

01000000 
to 

01111110 

Addresses for up to 63 tactors. 

01111111 ALL CALL - all tactors respond 

10000000 
to 

11111111 

Repetition Period value 0 to 127 with 
32 mS resolution (0 to ~4 seconds). 

Table 24. Revised Command Structure. 
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VIE. INCORPORATION OF ADDITIONAL DESIGN FEATURES 

The initial intelligent tactor design was valuable to prove the concept is possible. 

The second-generation tactile interface incorporates the revised command structure and 

includes a design change to reduce current switching noise on the power line. This chapter 

presents three improvements to the basic TIC design that evolved from these two issues. 

A. IMPROVED BI-DIRECTIONAL CURRENT SWITCHING SCHEME 

The initial method for generating bi-directional tactor current alternately activates 

the diagonal switch pairs in the current switching structure of Figure 36. The implemented 

switching pattern is illustrated in Figure 37. The drawback to this initial switching pattern 

results from the switching characteristics of the bi-directional junction transistors. For a 

brief period, both switches on each leg are conducting, resulting in a low resistance path 

between the power line and ground. This momentary shorting action produces noticeable 

transients on the power line that may affect TIC operation. A better switching pattern is 

illustrated in Figure 38. The revised switching scheme prevents any shorting action on 

either leg of the current switching structure, greatly reducing the switching transients on the 

power line. 
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Figure 36. Tactor Current-Switching Structure. 

la & lb on 2a & 2b on 

time 

Figure 37. Initial Current Switching Pattern. 

la & lb on 2a & 2b on 

time 

Figure 38. Revised Current Switching Pattern. 

88 



B. PROGRAMMABLE OSCILLATION FREQUENCY 

Incorporating a frequency register would allow the TIC to vary the tactor oscillation 

frequency on the fly. Implementation of a separate frequency command is illustrated in 

Figure 39. The redesigned module also includes the revised current switching pattern 

discussed in the preceding section. To support the revised current switching pattern, the 

oscillation frequency generator must produce a frequency eight times the desired oscillation 

rate. This higher frequency then drives a loop counter whose value defines the switching 

pattern. 

Programmable Oscillation Frequency 

Frequency 
Register 

Frequency 
Counter 

I i i 

Frequency 
Comparitor 

Eight times 
Oscillation 
Frequency Reset 

i r 

Oscillation 
Counter 

i 
enable 
Power 

Current 
Switching 
Actuator 

 ►la&lb 

 ► 2a & 2b 

Figure 39. Generating the Oscillation Frequency with Revised Switching. 
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C. WAVE SHAPE GENERATION USING DUTY CYCLE 

Incorporation of a duty cycle parameter instead of the pulse width parameter 

requires the system to calculate pulse width from the stored duty cycle and repetition period. 

A possible design that uses duty cycle to create the desired wave shape is illustrated in 

Figure 40. This design uses a single up counter whose value is compared to the stored 

repetition period and calculated pulse width to control tactor activation. 

Duty Cycle based Control 

Duty Cycle 
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Repetition 
Period 

Register 

I 
Pulse Width 
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Timing 
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Pulse Width 
Comparitor 
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Period 

Comparitor 

I 1 
enable        to 

Output 

Power 
Control 

Logic 
Reset 

1  enable 
▼ Power 

Figure 40. Wave Shape Generation using a Duty Cycle Register. 
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D. REVISED COMMAND DECODER AND CONTROLLER 

Changes to the command structure directly affect the design of the Command 

Decoder and Controller module. Many changes are required in this module since the 

revised commands differ significantly from the original command structure. The most 

sweeping changes are required in the control signals produced by the command sequence 

controller. Figure 41 illustrates the design changes required in the Command Decoder and 

Controller module. 

Command Decoder and Controller 
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Repetition Period    Enable 
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Figure 41. Revised Command Decoder and Controller module. 
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IX. CONCLUSIONS AND FURTHER WORK 

Tactile communication is a viable method of conveying information without 

impeding other sensory inputs. In many applications, tactile messages may be most 

appropriate due to their intuitive and covert nature. 

Previously, tactile communication has been experimental and limited, lacking 

methods to effectively implement the technology in the field. This thesis has resulted in a 

communication protocol and a tactor interface chip that will advance tactile communication 

beyond its current physiological research environment. 

Implementation of this concept is currently awaiting successful VLSI fabrication. 

As more funding becomes available, many improvements are planned for the next 

generation of Tactor Interface Chips. The Naval Postgraduate School is ready to advance 

this technology for military, industrial, and consumer applications. 

A. TACTILE INTERFACE SYSTEM PERFORMANCE 

1. Simulation Performance during Design Process 

Using minimum sized transistors, the tactile system has been completely designed 

and simulated. The simulations operate properly at all development stages using clock 

speeds of 5 MHz. 

2. Parallel Port Data Modulator Performance 

An interface that allows driving the tactile array from any commercial computer has 

been developed to support TIC testing and demonstration. The modulator is provided 

command bytes from the parallel port of a computer. The command modulator 

automatically interfaces with the computer to receive the data then it transmits the data in 
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the require serial packet format. The Parallel Port Data Modulator has been manufactured 

and successfully tested using simple programmable logic devices. 

3. Manufactured TIC Performance 

When received from the fabrication and packaging process, the TIC did not operate 

as designed. In fact, the TIC produced on response at all. The entire design was simulated 

again and found to work exactly as specified. Inspection of the VLSI chips using a scanning 

electron microscope revealed many questionable manufacturing issues primarily regarding 

cleanliness. 

B. IMPROVEMENTS THAT ARE READY TO INCORPORATE 

As the current chip was being fabricated, design of the next generation tactile 

interface began. This new design improves the original design in several ways. 

1. Expanded Communication Protocol 

After careful evaluation of the original communication protocol, some basic changes 

were made to make better use of the available command structure. The number of addresses 

was reduced to allow improvement in the repetition period resolution. Pulse width was 

discarded in favor of a duty cycle definition. Reset and oscillation frequency commands 

were also added. 

2. Shaped Oscillation Current 

Currently, tactor current is applied in alternating square waves. A current switching 

scheme that prevents momentary creation of a low resistance path between the power and 

ground would help reduce tactor switching noise. A simple method to switch the current 

that avoids any potential power to ground shorting was presented.   Other methods that 
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would provide a more shaped output are under consideration and may actually be used to 

produce a more sinusoidal current. 

3. Programmable Frequency 

It is desirable to support many different frequencies because different tactile 

transmitter designs operate best at specific frequencies. The current TIC design has a 

frequency selection between 125 Hz and 250 Hz. Incorporating a frequency counter into the 

tactile design would expand the number of supported frequencies to sixteen. 

C. RECOMMENDATIONS FOR NEXT VLSI LAYOUT 

1. Elaborate Testing and Measurement Points 

The greatest impediment to determining the reason for failure of the current chip is 

the lack of any test points within the circuit. The next generation chip should include 

numerous test points throughout all stages of command processing to allow signal tracing. 

A method currently being considered is the incorporation of eight outputs that provide 

circuit status information. By coupling these outputs to a four bit input selection, 128 

parameters can be monitored to determine chip performance. 

2. Timing with Up Counters and Comparators 

By using up counters and comparators for system timing, redundant down counters 

can be eliminated. Counter control would be limited to a single counter while output control 

would result from comparing the counter value to a stored or calculated value. 

D. PROSPECTS FOR FUTURE DEVELOPMENT 

1. On-board Current Switching 

Due primarily to the complexity of including analog BiCMOS components on a 

digital CMOS chip, the tactor current switches are housed on a separate chip with the 
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control signals being provided by the TIC. The final TIC must incorporate these current 

switches onto the chip to allow embedding the TIC into the tactor casing. This revision is 

fundamental to the creation of an intelligent tactor. 

2. Programmable Addressing 

Use of programmable-gates would allow the TIC address to be electronically 

assigned rather than set using external jumpers. Additionally, multiple address registers 

could be included to allow each TIC to respond to several different addresses. Multiple 

addressing would allow implementation of logical groups for more efficient communication. 

3. Two-Way Communications 

A change to the fundamental system paradigm might incorporate the ability for real- 

time feedback to the controller. The status data could include all current TIC parameters. 

Incorporating an onboard vibration sensor could also provide actual indication of tactor 

operating parameters. Clearly, this change is beyond the early development requirements 

for a functional tactile interface. 
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APPENDIX A. TIC MODELING USING VERILOG 

A top-down design approach was used to ensure the Tactor Interface Chip 

performed exactly as required. The Verilog® hardware description language, presented in 

Reference 6, was used extensively for modeling all TIC components. Components at all 

abstraction levels were tested using common "test benches" to ensure identical performance 

between behavioral and structural definitions. Behavioral models were first designed and 

tested to validate the design descriptions. The elements were then converted to structural 

designs and tested with the same test bench programs to verify they performed precisely as 

required. 

This appendix documents the Verilog® code used in the TIC design. Each section 

contains the test bench program, followed by the behavioral design definition and the 

structural design definition. 

A. TACTOR INTERFACE CHIP 

// File: TIC_test.v 
// 
// Description:  Test bench for Tactor Interface Chip 
// 
// Author: Jeff Link 

'define PRD 40 

module TIC_test; 

reg  [0:7] words [0:17] ; 
reg  [0:7] send; 
reg din,reset; 
integer ii, jj;      // loop counters 
wire elk,valid; 
wire tPwrl,tPwr2; 

Figure 42. TIC Test Bench Verilog® source code. 
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clock #('PRD/2) clkl (elk); 
//  TIC_b tic (tPwrl, tPwr2, din, elk, reset); 
TIC_s tic (tPwrl, tPwr2, din, elk, reset); 

initial begin 
$display("time 
$monitor("time %0d 
words[ 0]=8'b00011010 
wordsf l]=8'bl0000110 
wordsf 2]=8'bll000011 
wordsf 3]=8'b00010010 
words! 4]=8'bl0001010 
words[ 5]=8'bll000100 
wordsf 6]=8'b00111011 
words! 7]=8'b01111111 
words[ 8]=8'b00111011 
wordsf 9]=8'bl0000010 
words[10]=8'bll000001 
words[ll]=8'b00011010 
words[12]=8'bl0000010 
words[13]=8'bll000001 
words[14]=8'b00011010 
words[15]=8'bl0000000 
words[16]=8'bll000010 
words[17]=8'b00010010 

\ttPwrl tPwr2"); 
\t  %b    %b",$time,tPwrl,tPwr2); 

// valid address, execute command 
// put 110 in pw reg & start tactor 
// put 11 in rp reg & start tactor 
// invalid address, ignore command 
// don't put 1010 in pw reg 
// don't put 100 in rp reg 
// invalid address, ignore 
// all call address, execute command 
// invalid address, wait for command 
// put 10 in pw reg & start tactor 
// put 1 in rp reg & start tactor 
// valid address, execute command 
// same pw no need to reload 
// same rp no need to reload 
// valid address, execute command 
// shut off tactor 
// put 10 in rp reg but won't run 
// invalid address, ignore command 

// line idle 

ii=ii+l) begin 

■   jj=jj+l) begin 

reset = 1; 
din = 1; 
#PPRD/4) 
reset = 0; 
#(2*'PRD) 
for (ii=0; ii<18; 

send=words[ii] ; 
#'PRD din = 0; 
for (jj=0; jj<£ 

#,PRD dln=send[jj] 
end 
#'PRD din = ~Asend; 
t'PRD din = 1; 
$display("time %0d\t sent %b",$time,send); 
#{4*VPRD); 
if (ii==2||ii==5|I±±==1011±±==13||ii==16) 

# (1000*VPRD); // line idle 
end 
#(100*'PRD) 
$finish; 

end 

// start bit 

// data bits 

// odd parity 
// stop bit 

endmodule 

Figure 42. TIC Test Bench Verilog  source code (continued) 
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//•a********************************************************************* 

// File: TIC_b.v 
// 
// Description:  Tactor Interface Chip - behavioral model 
// 
// Author: Jeff Link 

module TIC_b (tPwrl, tPwr2, din, elk, reset); 

output tPwrl, tPwr2; 
wire  tPwrl, tPwr2; 
input din, elk, reset; 
wire   [7:0] cmdBus; 
wire   [5:0] pwReg,rpReg; 

ser_rcvr_b  sr (cmdBus, busValid, din, elk, reset); 
cmd_decode_b cd (enPwr,pwReg,rpReg,cmdBus,busValid,elk,-reset); 
pwr_cntrl_b pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, elk); 

endmodule 

Figure 43. TIC Behavioral model Verflog® source code. 

// File: TIC_s.v 
// 
// Description:  Tactor Interface Chip - structural model 
// 
// Author: Jef.f Link 

module TIC_s (tPwrl, tPwr2, din, elk, reset); 

output tPwrl, tPwr2; 
wire  tPwrl, tPwr2; 
input din, elk, reset; 
wire   [7:0] cmdBus; 
wire   [5:0] pwReg,rpReg; 

ser_rcvr_s  sr (cmdBus, busValid, din, elk, reset); 
cmd_decode_s cd (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset); 
pwr_cntrl_s pc (tPwrl, tPwr2, pwReg, rpReg, enPwr, elk); 

endmodule 

Figure 44. TIC Structural model Verflog® source code. 
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B. SERIAL DATA RECEIVER 

// File: ser_rcvr_test.v 
// 
// Description:  Test bench for Serial Data Receiver 
// 
// Author: Jeff Link 

module ser_rcvr_test; 

reg  [0:7] words [0:9]; 
reg  [0:7] send; 
wire [7:0]  v; 
reg din,rst; 
reg  [3:0] ii, jj; 
wire elk,valid; 

// loop counters 

clock #(100)   clkl (elk); 
// ser_rcvr_b revr (v,valid,dln,clk,rst); 
ser_rcvr_s revr (v,valid,din,elk,rst); 

initial begin 
=8'bl0101010 
=8'b01010101 
=8'bll001101 
=8'bl0110110 
=8'b00100100 
=8'bll011011 
=8'bl0111101 
=8'b01000010 
=8'b00001111 
=8'b00111100 

words[0] 
words[1] 
words[2] 
words[3] 
words[4] 
words[5] 
words[6] 
words[7] 
words[8] 
words[9] 
rst = 1; 
din = 1; 
#5 
rst = 0; 
#500 
for (ii=0; ii<10; ii=ii+l) begin 

send=words[ii]; 
#200 din = 0; 
for (jj=0; jj<8; jj=jj+l) begin 

#200 dln=send[jj]; 
end 
#200 din = ~~send; 
#2 0/0 din = 1; 

end 
#400 
$finish; 

end 

always @(valid) begin 
if (valid) 

$display("time %0d  \t  %b is valid",$time,v); 
end 

// start bit 

// data bits 

// odd parity 
// stop bit 

endmodule 

,® Figure 45. Serial Data Receiver Test Bench Verilog   source code 
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//************************************************************************ 

// File: ser_rcvr_b.v 
// 
// Description:  Serial Data Receiver - behavioral model 
// 
// Author: Jeff Link 
/ / * * * ******************************************************************** 

module ser_rcvr_b (cmdBus, busValid, din, elk, reset); 
output [7:0] cmdBus; 
wire  [7:0] cmdBus; 
output busValid; 
input din/ elk, reset; 
wire   [11:0] qBus; 

bitshiftl2_b bsO (qBus, din, elk, reset, partClear); 
bitlatch8_b  blO (cmdBus, qBus[9:2], latch, reset); 
input_valid_b ivO (latch, busValid, partClear, qBus, elk, reset); 

endmodule 

Figure 46. Serial Data Receiver Behavioral model Verflog® source code. 

//*********************************************************************** 

// File: ser_rcvr_s.v 
// 
// Description:  Serial Data Receiver - structural model 
// 
// Author: Jeff Link 
//*********************************************************************** 

module ser_rcvr_s (cmdBus, busValid, din, elk, reset); 
output [7:0] cmdBus; 
wire   [7:0] cmdBus; 
output busValid; 
input din, elk, reset; 
wire   [11:0] qBus; 

bitshiftl2_s bsO (qBus, din, elk, reset, partClear); 
bitlatch8_s  blO (cmdBus, qBus[9:2], latch, reset); 
input_valid_s ivO (latch, busValid, partClear, qBus, elk, reset); 

endmodule 

Figure 47. Serial Data Receiver Structural model Verflog® source code. 
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1. Twelve-Bit Input Shift Register 

// File: bitshiftl2_test.v 
// 
// Description:  Test bench for 12 bit Shift Register 
// 
// Author: Jeff Link . 
//••••A****************************************************************** 

module bitshiftl2_test; 

reg     latch,rst; 
reg     [0:7]   words   [0:1] ; 
reg     [0:7]   send; 
reg  [3:0] ii, jj;      // loop counters 
reg din, reset, partclear; 
wire [11:0] bus; 

clock   clkl (elk); 
bitshiftl2_b shiftl (bus, din, elk, reset, partclear); 

// bitshiftl2_s shiftl (bus, din, elk, reset, partclear); 

initial begin 
words[0]=8'bl0101010; 
words[l]=8'bl0110110; 
$monitor("time %0d  \t%b %b %b %b %b %b %b %b %b %b %b %b is on bus", 

$time,bus[ll],bus[10],bus[9],bus[8],bus[7],bus[6],bus[5],bus[4],bus[3],bus[2] 
,bus[l],bus[0]); 

din = 1; 
reset = 1; 
partclear = 0; 
$display("time %0d  \t\t\t\t\t\t    bus reset and idle",$time); 
#2 reset = 0; 
#44 
for (ii=0; ii<2; ii=ii+l) begin 

send=words[ii]; 
#9  din =0; II  start bit 
$display("time %0d  \t\t\t\t\t\t  %b start bit",$time,din); 
for (jj=0; jj<8; jj=jj+l) begin 

#20  dln=send[jj]; // data bits 
$display("time %0d  \t\t\t\t\t\t  %b data bit",$time,din); 

end 
#20  din = -Äsend; // odd parity 
$display("time %0d  \t\t\t\t\t\t  %b parity bit",$time,din); 
#20  din =1; // stop bit 
$display("time %0d  \t\t\t\t\t\t %b stop bit", $time,din); 
#9 partclear = 1; 
$display("time %0d  \t\t\t\t\t\t    partial clear",$time); 
#2 partclear = 0; 

end 

Figure 48. Twelve-Bit Input Shift Register Test Bench Verflog® source code. 
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#40 
reset=l; 
$display("time %0d \t\t\t\t\t\t    reset",$time); 
#40 
$finish; 

end 

endmodule 

Figure 48. Twelve-Bit Input Shift Register Test Bench Verilog® source code, (continued) 

//••••••A**************************************************************** 

// File: bitshiftl2_b.v 
// 
// Description:  12 bit Shift Register - behavioral model 
// 
// Author: Jeff Link 

module bitshiftl2_b (bus, din, elk, reset, partclear); 
output [11;0]  bus; 
reg    [11:0]  bus; 
input din, elk, reset, partclear; 
always @(posedge elk)  begin 

if (-reset)  begin 
#2 
bus = bus « 1; 
bus[0]  = din; 

end 
end 

always begin 
#1 
if (reset) 
bus = 0; 

end 

always begin 
#1 
if (partclear & -reset) 

bus[ll:l]  = 0; 
end 

endmodule 

.® Figure 49. Twelve-Bit Input Shift Register Behavioral model Verilog  source code. 
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// File: bitshiftl2_s.v 
// 
// Description:  12 bit Shift Register - structural model 
// 
//. Author: Jeff Link 

module bitshiftl2_s (bus, din, elk, reset, partclear); 
output [11:0]  bus; 
wire   [11:0]  bus; 
wire   [11:0]  nbus; 
input din, elk, reset, partclear; 
reg   hi; 

dff_b dsO (bus[0],nbus[0],dIn,hi,ntlout,elk), 
dsl (bus[l],nbus[l],bus[0],hi,nrlout,elk), 
ds2 (bus[2],nbus[2],bus[l],hi,nrlout,elk), 
ds3 (bus[3],nbus[3],bus[2],hi,nrlout,elk), 
ds4 (bus[4],nbus[4],bus[3],hi,nrlout,elk), 
ds5 (bus[5],nbus[5],bus[4],hi,nrlout,clk), 
ds6 (bus[6],nbus[6],bus[5],hi,nrlout,elk), 
ds7 (bus[7],nbus[7],bus[6],hi,nrlout,elk), 
ds8 (bus[8],nbus[8] ,bus[7],hi,nrlout,elk), 
ds9 (bus[9],nbus[9],bus[8],hi,nrlout,elk), 
dslO (bus[10],nbus[10],bus[9],hi,nrlout,elk), 
dsll (bus[ll],nbus[ll],bus[10],hi, nrlout,elk); 

not #1 ntl (ntlout,reset) ; 

nor #2 nrl (nrlout,reset,partclear) ; 

initial begin 
hi=l; 

end 

endmodule 

.® . Figure 50. Twelve-Bit Input Shift Register Structural model Verilog  source code 
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2. Eight-Bit Data Latch 

//*********************************************************************** 

// File: bitlatch8_test.v 
// 
// Description:  Test bench for 8 bit Data Latch 

// 
// Author: Jeff Link 
//*********************************************************************** 

module bitlatch8_test; 

reg latch,rst; 
reg  [8:0] ii;      // loop counter 
wire [7:0] bus; 

//  bitlatch8_b latchl (bus,ii[7 :0],latch,rst) ; 

bitlatch8_s latchl (bus ii[7:0],latch,rst); 

initial begin 
$monitor("time %0d \t%b %b %b %b %b %b %b %b is latched", 

$time,bus[7],bus[6] bus[5] ,bus[4],bus[3] ,bus[2],bus[l],bus[0]); 

rst = 1; 
latch = 0; 
#5 
rst = 0; 
#5; 
for (ii=0; ii<256; ii= =ii+17) begin 

$display("time %0d \t%b %b %b %b %b %b %b %b on bus", 
$time,ii[7],ii[6] ii[5], ii[4],ii[3],ii [2],ii [l],ii[0]); 

#10  latch = 1; 
#10  latch = 0; 
#10  rst = 1; 
#10  rst = 0; 

end 
#40 
$finish; 

end 
endmodule 

,® Figure 51. Eight-Bit Data Latch Test Bench Verflog  source code 
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//*********************************************************************** 

// File: bitlatch8_b.v 
// 
// Description:  8 bit Data Latch - behavioral model 
// 
// Author: Jeff Link 
// ,**************************************■******************************** 

module bitlatch8_b (bus, inBus, latch, reset) 
output [7:0]  bus; 
reg   [7:0]  bus; 
input  [7:0]  inBus; 
input  latch, reset; 

always @(posedge latch)  begin 
if (-reset) 
bus = #3 inBus; 

end 

always begin 
#1 
if (reset) 
bus = 0; 

end 
endmodule   

Figure 52. Eight-Bit Data Latch Behavioral model Verilog® source code. 

,,*********************************************************************** 
// File: bitlatch8_s.v 
// 
// Description:  8 bit Data Latch - structural model 

// 
// Author: Jeff Link 
// *********************************************************************** 

module bitlatch8_s   (bus,   inBus,   latch,   reset); 

output   [7:0] bus; 
wire        [7:0] bus; 
wire        [7:0] nbus; 
input      [7:0] inBus; 
input     latch, reset; 
reg        hi; 

dff_b db0(bus[0],nbus[0],inBus[0],hi,-reset,latch), 
dbl(bus[l],nbus[l],inBus[1],hi,-reset,latch), 
db2(bus[2],nbus[2],inBus[2],hi,-reset,latch), 
db3(bus[3],nbus[3],inBus[3],hi,-reset,latch), 
db4(bus[4],nbus[4],inBus[4],hi,-reset,latch), 
db5(bus[5],nbus[5],inBus[5],hi,-reset,latch), 
db6(bus[6],nbus[6],inBus[6],hi,-reset,latch), 
db7(bus[7],nbus[7],inBus[7],hi,-reset,latch); 

initial    begin 
hi=l; 

end 
endmodule   

Figure 53. Eight-Bit Data Latch Structural model Verilog® source code. 
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3. Input Stream Validity Check 

// File: input_valid_test.v 
// 
// Description:  Test bench for Input Stream Validity Check 
// 
// Author: Jeff Link 

module input_valid_test; 

.reg [0:7] words [0:2]; 
reg [0:7] send; 
reg [11:0] inBus; 
reg reset; 
reg [3:0] ii;      // loop counter 

clock #(100) clkl (elk); 
// input_valid_b iv (latch, busValid, partClear, inBus, elk, reset); 
input_valid_s iv (latch, busValid, partClear, inBus, elk, reset); 

initial begin 
$display("\t\t\tlat bV pC inBus"); 
$monitor("time %0d \t %b %b %b  %b", 
$time,latch,busValid,partClear,inBus); 

words[0]=8'bl0101010; 
words[l]=8'bl0110110; 
words[2]=8'b01000010; 
reset = 0; 
#25 
for (ii=0; ii<3; ii=ii+l) begin 

inBus[11]=1;r 
inBus[10]=0; 
inBus[9:2]=words[ii]; 
inBus[1]=~~words[ii]; 
inBus[0]=1; 
#200; 

end 
#400 
$finish; 

end 

always ©(busValid) begin 
if (busValid) 
$display("time %0d\t   %b is valid",$time,inBus); 

end 

always @(po<sedge partClear) begin 
#1 
inBus[11:1]=0; 
#40 

inBus [10] =1; 
end 

endmodule 

Figure 54. Input Stream Validity Check Test Bench Verilog® source code. 
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//♦••♦•••a*************************************************************** 

// File: input_valid_b.v 
// 
// Description:  Input Stream Validity Check - behavioral model 
// 
// Author: Jeff Link 
//•••••a***************************************************************** 

module input_valid_b (latch, busValid, partClear, inBus, elk, reset); 
output latch, busValid, partClear; 
reg   latch, busValid, partClear; 
input  [11:0] inBus; 
input elk, reset; 
reg   format,clearValid; 

initial begin 
latch = 0; 
busValid = 0; 
partClear = 0; 
clearValid=0; 

end 

always begin 
#1 
format = #12 (inBus[11]&~inBus[10]&inBus[0]&(AinBus[9:1])); 
clearValid = (-inBus[ll]&inBus[10]fcbusValid); 

end 

always begin 
#1; 
latch = #2 (~ (-format | elk));' 

end 

always begin 
#1 
partClear = #2 (format & busValid); 

end 

always  @(posedge latch)  begin 
if (-(reset | clearValid))  begin 
busValid = #3 format; 

end 
end 

always begin 
#1 
if (reset | clearValid)  begin 
busValid = #1 0; 

end 
end 

endmodule   

Figure 55. Input Stream Validity Check Behavioral model Verilog® source code. 
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// File: input_valid_s.v 
// 
// Description:  Input Stream Validity Check - structural model 
// 
// Author: Jeff Link 
//A********************************************************************** 

module input_valid_s (latch, busValid, partClear, inBus, elk, reset); 
output latch, busValid, partClear; 
wire  latch, busValid, partClear; 
input  [11:0] inBus; 
input elk, reset; 
reg   hi; 

// nor #2 nrbus(nrbusout,nBusLatch,valid,elk); 

xor #2 xrpO(xrpOout,inBus[1],inBus[2]),   // parity check 
xrpl(xrplout,inBus[3],inBus[4]), 
xrp2(xrp2out,inBus[5],inBus[6]), 
xrp3(xrp3out,inBus[7],inBus[8]), 
xrp4(xrp4out,xrp0out,xrplout), 
xrp5(xrp5out,xrp3out,inBus[9]), 
xrp6(xrp6out,xrp2out,xrp5out), 
xrp7(parity,xrp4out,xrp6out); 

not #1 ntO(ninBuslO,inBus[10]), 
ntl(nformat,format); 

nand #2 naf0(nafOout,parity,ninBuslO),   // format check 
nafKnaflout, inBus [11] , inBus [0] ) ; 

nor #2  nrfO(format,nafOout,naflout), 
nrlldatch,nformat,elk) , // latch 
nrr2(nclrDff,reset,clrValid);     // clear bus valid 

and #2  andO(partClear,format,busValid);   // partial clear 

nor #2 nrO(clrValid,inBus[11],ninBuslO,nbusValid); // clear bus valid 

dff_b  dbO(busValid,nbusValid,format,hi,nclrDff,latch);// busValid 

initial 
hi=l; 

endmodule 

Figure 56. Input Stream Validity Check Structural model Verflog® source code. 
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C. COMMAND DECODER AND CONTROLLER 

// File: cmd_decode_test.v 
// 
// Description:  Test bench for Command Decoder and Controller 
// 
// Author: Jeff Link 

module cmd_decode_test; 

reg  [7:0] cmdBus; 
reg busValid,reset; 

wire   [5:0] pwReg,rpReg; 

clock  clkl (elk); 
// cmd_decode_b dcO (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset); 
cmd_decode_s del (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset); 

initial begin 
$display("\t\t\tenPwr pwReg  rpReg"); 
$monitor("time %0d  \t  %b   %b %b", 

$ t ime,enPwr,pwReg,rpReg); 
cmdBus=0; • 
busValid=0; 
reset=l; 
#7  reset=0; 
#9  cmdBus=8'b00011010 

busValid=l;  // 16 
#80 cmdBus=8'bl0000110 

busValid=l;  // 96 
#80 cmdBus=8'bll000011 

busValid=l;  //176 
#80 cmdBus=8'b00010010 

busValid=l;  //256 
#80 cmdBus=8'bl0001010 

busValid=l;  //336 
#80 cmdBus=8'bll000100 

busValid=l;  //416 
#80 cmdBus=8'b01111111 

busValid=l;  //496 
#80 cmdBus=8'bl0001010 

busValid=l;  //576 
#80 cmdBus=8'bll001011 

busValid=l;  //656 
#80 cmdBus=8'b00011010 

busValid=l;  //736 
#80 cmdBus=8'bl0000000 

busValid=l;  //816 
#80 cmdBus=8'bll000010 

busValid=l;  //896 
#80 cmdBus=8'b00010010 

busValid=l;  //976 
#100 
$finish 

end 

// valid address, execute command 

// put 110 in pw reg & start tactor 

// put 11 in rp reg & start tactor 

// invalid address, ignore command 

// don't put 1010 in pw reg 

// don't put 100 in rp reg 

// all call address, execute command 

// put 1010 in pw reg & start tactor 

// put 1011 in rp reg & start tactor 

// valid address, execute command 

// put 0000 in pw reg & start tactor 

// put 0010 in rp reg & start tactor 

// invalid address, ignore command 

.® . Figure 57. Command Decoder and Controller Test Bench Verilog  source code 
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always @ (cmdBus) begin 
#75 busValid=0; 

end 

endmodule 

Figure 57. Command Decoder and Controller Test Bench Verilog® source code, 
(continued) 

// File: cmd_decode_b.v 
// 
// Description:  Command Decoder and Controller - behavioral model 
// 
// Author: Jeff Link 

module cmd_decode_b (enPwr,pwReg,rpReg,cmdBus,busValid,elk,nReset); 

output enPwr,pwReg,rpReg; 
wire  enPwr; 
wire   [5:0] pwReg,rpReg; 
input  [7:0] cmdBus; 
input busValid,elk,nReset; 
wire   [6:0] tactAddr; 

addr_ref_b ar (tactAddr); 
addr_comp_b ac (validAddr,cmdBus,tactAddr); 
cmd_logic_b cl (enPwr,pwLatch,rpLatch, 

cmdBus,busValid/validAddr,pwDiff,rpDiff,elk,nReset); 
pw_reg_b   pr (pwReg,pwDiff,cmdBus[5:0],pwLatch,nReset); 
rp_reg_b   rr (rpReg,rpDiff,cmdBus[5:0] , rpLatch,nReset); 

endmodule 

Figure 58. Command Decoder and Controller Behavioral model Verilog® source code. 
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I,*********************************************************************** 

// File: cmd_decode_s.v 
// 
// Description:  Command Decoder and Controller - structural model 

// 
// Author: Jeff Link 
i,*********************************************************************** 

module cmd_decode_s (enPwr,pwReg,rpReg,cmdBus,busValid,elk,reset); 

output enPwr,pwReg,rpReg; 
wire  enPwr; 
wire   [5:0] pwReg,rpReg; 
input  [7:0] cmdBus; 
input busValid,elk, reset; 
wire   [6:0] tactAddr; 

addr_ref_b ar (tactAddr); 
addr_comp_s ac (validAddr,cmdBus,tactAddr); 
cmd_logic_s cl (enPwr,pwLatch,rpLatch, 

cmdBus,busValid,validAddr,pwDiff,rpDiff,elk,-reset); 
pw_reg_s   pr (pwReg,pwDi f f,cmdBus[5:0],pwLatch,reset); 
rp_reg_s   rr (rpReg,rpDiff,cmdBus[5:0],rpLatch,reset); 

endmodule 

Figure 59. Command Decoder and Controller Structural model Verilog® source code. 
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1. Command Sequence Controller 

// File: cmd_logic_test.v 
// 
// Description:  Test bench for Command Sequence Controller 
// 
// Author: Jeff Link 
//*********************************************************************** 

module cmd_logic_test; 

reg  [7:0] cmdBus; 
reg busValid,nValidAddr,pwDiff,rpDiff,nReset; 

clock  clkl (elk); 
//  cmd_logic_b log  (enPwr,pwLatch,rpLatch, 
// cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset); 
cmd_logic_s log  (enPwr,pwLatch,rpLatch, 

cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset); 

initial begin 
$display("\t\t\tenPwr pwLatch rpLatch"); 
$monitor("time %0d  \t  %b    %b .      %b", 

$time,enPwr,pwLatch, rpLatch); 
cmdBus=0; 
busValid=0; 
nValidAddr=l; 
pwDiff=0; 
rpDiff=0; 
nReset=0; 
#7  nReset=l ,- 

. #9  cmdBus=8'b00011010; 
busValid=l;  //16 

#5 nValidAddr=0;     //21 
#21 busValid=0;  //42 
#2 6 nValidAddr=l; 

cmdBus=8'bl0000110; 
busValid=l; //68 

#4 pwDiff=l; //72 
#26 busValid=0; //98 
#12 cmdBus=8'bll000010; 

busValid=l; //HO 
#4     rpDiff=l; //114 
#19  busValid=0;     //133 
#41  cmdBus=8'bOOOO0O0O; 

busValid=l; //174 
#4 pwDiff=l; //178 
#12 busValid=0; //190 
#4  cmdBus=8'b00000000; 

busValid=l;  //194 
#16 busValid=0;  //210 
#100 
$finish; 

end 

Figure 60. Command Sequence Controller Test Bench Verilog® source code. 

113 



always @ (posedge pwLatch) begin 
#3 pwDi ff=0; 

end 

always @ (posedge rpLatch) begin 
#3 rpDiff=0; 

end 

endmodule 

,® Figure 60. Command Sequence Controller Test Bench Verilog  source code, (continued) 

// File: cmd_logic_b.v. 
// 
// Description:  Command Sequence Controller - behavioral model 

// 
// Author: Jeff Link 

module cmd_logic_b (enPwr,pwLatch, rpLatch, 
cmdBus,busValid,vAddr,pwDiff,rpDiff,elk,nReset); 

output enPwr,pwLatch,rpLatch; 
reg   enPwr,pwLatch,rpLatch; 
reg    [1:0] state; 
input  [7:0] cmdBus; 
input busValid,vAddr,pwDiff,rpDiff,elk, nReset; 

initial begin 
state=0; 
enPwr=0; 
pwLatch=0; 
rpLatch=0; 

end 

always @ (posedge elk) begin 
if (nReset) begin 

case(state) 
2'b00,2'bl0: 

if (busValid&-cmdBus[7]&vAddr) 
state=l; 

2'b01: 
if (busValid&cmdBus[7]) 

state=3; 
2'bll: 

if (busValid&~cmdBus[7]) 
state=0; 

endcase 
end 

end 

Figure 61. Command Sequence Controller Behavioral model Verilog® source code. 
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always begin 
if (nReset&&state==3) begin 

if (cmdBus==8 'blOOOOOOO&ScbusValid) 
enPwr=0; 

else if (cmdBus[7]&&~cmdBus[6]&&busValid) 
enPwr=~pwDi f f; 

else if (cmdBus[7]&&cmdBus[6]&&busValid) 
enPwr=~rpDiff; 

pwLatch=(cmdBus[7]&&~cmdBus[6]&&busValid&&pwDiff), 
rpLatch=(cmdBus[7]&&cmdBus[6]&&busValid&&rpDiff); 

end 
#1; 

end 

always @ (nReset) begin 
if (-nReset) begin 

state=0; 
enPwr=0; 
pwLatch=0; 
rpLatch=0; 

end 
end 

endmodule 

,® . Figure 61. Command Sequence Controller Behavioral model Verilog  source code, 
(continued) 
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// File: cmd_logic_s.v 
// 
// Description:  Command Sequence Controller - structural model 

// 
// Author: Jeff Link 

module cmd_logic_s (enPwr,pwLatch,rpLatch, 
cmdBus,busValid,nValidAddr,pwDiff,rpDiff,elk,nReset); 

output enPwr,pwLatch,rpLatch; 
wire   [1:0] q,nq; 
input  [7:0] cmdBus; 
input busValid,nValidAddr,pwDiff,rpDiff,elk,nReset; 

reg   hi; 

dff_b  ds0(q[0] ,nq[0],nd2out,hi,nReset,elk) ,   // state registers 
dsl(q[13,nq[l],nt0out,hi,nReset,elk); 

not #1 nt0(nt0out,nd0out), 
nt4(nt4out,cmdBus[6]), 
nt5(pwLatch,nd4out), 
nt6(rpLatch,nd5out); 

nand #2 ndO(ndOout,cmdBus[7],q[0]), 
ndl(ndlout,nq[l],q[0]) , 
nd2(nd2out,nd0out,ndlout,orOout), 
nd3(nd3out,nr0out,nrlout,anOout) , 
nd4(nd4out,anlout,pwDiff,nt4out), 
nd5(nd5 out,anlout,rpDi f f,cmdBus[6]), 
nd6(nd6out,nReset,nd3out), 
nd7(nd7out,anlout,pwDiff,rpDiff) , 
nd8(nd8out,nd4out,nd5out,nd7out); 

or #2  or0(or0out,cmdBus[7],q[0],nValidAddr), 
orl(orlout,nd6out,nd8out); 

nor  #2 nrOfnrOout,cmdBus[0],cmdBus[l],cmdBus[2]), 
nrl(nrlout,cmdBus[3],cmdBus[4] , cmdBus[5]) , 
nr6(enPwr,nr7out,orlout), 
nr7(nr7out,enPwr,anlout); 

and #2  anO(anOout,cmdBus[7],busValid,nt4out), 
anl(anlout,q[l],q[0],busValid,cmdBus[7]),- 

initial 
hi=l ; 

endmodule  

.® . Figure 62. Command Sequence Controller Structural model Verflog  source code 
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2. Address Comparator 

// File: addr_comp_test.v 
// 
// Description:  Test bench for Address Comparator 
// 
// Author: Jeff Link 

module addr_comp_test; 

reg  [7:0] inBus; 
wire [6:0] tactAddr; 

addr_ref_b addref (tactAddr); 
// addr_comp_b addcmp (nValidAddr,inBus,tactAddr); 
addr_comp_s addcmp (nValidAddr,inBus,tactAddr); 

// addr_comp_alt addcmp (nValidAddr, inBus,tactAddr); 

initial begin 
for (inBus=0; inBus<255; inBus=inBus+l) begin 

#20 
if (-nValidAddr) 

$display("time %0d\t   %b is valid address", $time, inBus) ; 
end 
#20 
if (-nValidAddr) 

$display("time %0d\t   %b is valid address",$time,inBus); 
$finish; 

end 
endmodule 

Figure 63. Address Comparator Test Bench Verilog® source code. 

// File: addr_comp_b.v 
// 
// Description:  Address Comparator - behavioral model 
// 
// Author: Jeff Link 

module addr_comp_b (validAddr,inBus,tactAddr); 
output validAddr; 
reg   validAddr; 
input  [7:0] inBus; 
input  [6:0] tactAddr; 

always begin 
#4 
validAddr = (-inBus[7]&&(inBus[6:0]==tactAddr||inBus[6:0]==7'blllllll)) 

end 
endmodule 

Figure 64. Address Comparator Behavioral model Verilog® source code. 
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//*********************************************************************** 

// File: addr_comp_s.v 
// 
// Description:  Address Comparator - structural model 

// Author : Jeff Link 
, ,* ********************************************************* ************* 

module addr_comp_s (nValidAddr,inBus,tactAddr); 
output nValidAddr; 
input [7:0] inBus; 
input [6:0] tactAddr; 

xnor #2 xeqO(xegOout,inBus[0],tactAddr[0]),   // match reference 
xeql(xeglout,inBus[1],tactAddr[1]) 
xeq2(xeq2out,inBus[2],tactAddr[2]) 
xeq3(xeq3out,inBus[3],tactAddr[3]) 
xeq4(xeq4out,inBus[4],tactAddr[4]) 
xeq5(xeq5out,inBus[5],tactAddr[5]) 
xeq6(xeq6out,inBus[6],tactAddr[6]) 

nand #2 naeO(nae0out,xeq0out,xeqlout,xeq2out), 
nae2(nae2out,xeq3out,xeq4out,xeq5out), 
nae3(nae3out,xeq6out,ninBus7); 

nor #2 nreO(thisAddr,nae0out,nae2out,nae3out); 

not #1 nteO(ninBus7,inBus[7]);           // common elements 

nor #2 nrnO(nValidAddr,thisAddr, allCall) ; 

nand #2 naaO(naaOout,inBus[0],inBus[1],inBus[2]),   // all call check 
naa2(naa2out,inBus[3],inBus[4],inBus[5]), 
naa3(naa3out,inBus[6],ninBus7); 

nor #2 nraO(allCall,naa0out,naa2out/naa3out); 

endmodule 

.®. Figure 65. Address Comparator Structural model Verilog  source code 
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// File: addr_comp_alt.v 
// 
// Description: Address Comparator - alternate model 
// 
// Author: Jeff Link 

module addr_comp_alt (validAddr,inBus, tactAddr); 
output validAddr; 
input  [7:0] inBus; 
input  [6:0] tactAddr; 

xnor #2 xeqO 
xegl 
xeq2 
xeq3 
xeq4 
xeq5 
xeq6 

and #2 aneO 
anel 
ane2 
ane3 
ane4 
ane5 
ane6 

(xeqOout, 
(xeqlout, 
(xeq2out, 
(xeq3out, 
(xeq4out, 
(xeq5out, 
(xeq6out, 
(aneOout, 
(anelout, 
(ane2out, 
(ane3out, 
(ane4out, 
(ane5out, 
(thisAddr 

inBus[0] 
inBus[1] 
inBus[2] 
inBus[3] 
inBus[4] 
inBus[5] 
inBus[6] 
xeqOout, 
xeq2out, 
xeq4out, 
xeq6out, 
aneOout, 
ane2out, 
,ane4out 

,tactAddr[0]) 
,tactAddr[1]) 
,tactAddr[2]) 
,tactAddr[3]) 
,tactAddr[4]) 
,tactAddr[5]) 
,tactAddr[6]) 
xeqlout), 
xeq3out), 
xeq5out), 
ntcOout), 
anelout), 
ane3out), 
,ane5out); 

// match reference 

not #1  ntc0(ntc0out,inBus[7]); 
or #2   orcO(validAddr,thisAddr,allCall); 

and #2  anaO(anaOout,inBus[0],inBus[1]) , 
analtanalout,inBus[2],inBus[3]), 
ana2(ana2out,inBus[4],inBus[5]), 
ana3(ana3out,inBus[6],ntc0out), 
ana4(ana4out,ana0out,analout), 
ana5(ana5out,ana2out,ana3out), 
ana6(allCall,ana4out,ana5out); 

endmodule 

// common elements 

// all call check 

.® . Figure 66. Address Comparator Alternate Structural model Verflog  source code 
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3. Address Reference 

// File: addr_ref_test.v 
// 
// Description:  Test bench for Address Reference 
// 
// Author: Jeff Link 
//*********************************************************************** 

module addr_ref_test; 
wire   [6:0] tactAddr; 
addr_ref_b addrl (tactAddr); 

initial begin 
#1 
$display("time %0d\t  %b is reference address",$time,tactAddr) ,■ 
$finish; 

end 
endmodule 

Figure 67. Address Reference Test Bench Verilog® source code. 

// File: addr_ref_b.v 
// 
// Description:  Address Reference - behavioral model 
// 
// Author: Jeff Link 

'define ADDRESS 7'bOOllOlO 

module addr_ref_b (tactAddr); 
output [6:0] tactAddr; 
reg    [6:0] tactAddr; 

initial begin 
tactAddr = 'ADDRESS; 
#1; 

end 
endmodule 

Figure 68. Address Reference Behavioral model Verilog® source code. 
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4. Pulse Width Register 

// File: pw_reg_test.v 
// 
// Description:  Test bench for Pulse Width Register 
// 
// Author: Jeff Link 

module pw_reg_test; 

reg [5:0] inBus; 
reg latch,reset; 
wire [5:0] pwReg; 

// pw_reg_b regl (pwReg,pwDiff,inBus,latch,reset); 
pw_reg_s regl (pwReg,pwDiff,inBus,latch,reset); 

initial begin 
$display("\t\t\t  inBus  pwReg pwDiff"); 
reset=l; 
#1 
reset=0; 
#1 
latch=l; 
#3 
for (inBus=2; inBus<63; inBus=inBus+5) begin 

#4 
latch=~latch; 
#20 
latch=~latch; 
#16; 

end 
#100 
$finish; 

end 

always @ (pwDiff) begin 
$display("time %0d \t  %b %b %b",$time,inBus,pwReg,pwDiff); 

end 

endmodule 

Figure 69. Pulse Width Register Test Bench Verflog® source code. 
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//it********************************************************************** 

// File: pw_reg_b.v 
// 
// Description:  Pulse Width Register - behavioral model 
// 
// Author: Jeff Link 

module pw_reg_b (pwReg,pwDiff,inBus,latch,nReset); 

output [5:0] pwReg; 
output pwDiff; 
reg    [5:0] pwReg; 
reg   pwDiff; 
input  [5:0] inBus; 
input latch,nReset; 

always @ (posedge latch) begin 
if (nReset) 

#3 pwReg=inBus; 
end 

always @ (inBus) begin 
if (nReset) 

#4 pwDiff=(inBus!=pwReg); 
end 

always @ (pwReg) begin 
if (nReset) 

#4 pwDiff=(inBus!=pwReg) ; 
end 

always @ (negedge nReset) begin 
#1 pwReg=0; 

end 
endmodule 

Figure 70. Pulse Width Register Behavioral model Verilog® source code 
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//•a********************************************************************* 

// File: pw_reg_s.v 
// 
// Description:  Pulse Width Register - structural model 
// 
// Author: Jeff Link 

module pw_reg_s (pwReg,pwDiff,inBus,latch,reset); 

output [5:0] pwReg; 
output pwDiff; 
wire   [5:0] pwReg,npwReg ; 
input  [5:0] inBus; 
input  latch,reset; 

reg hi; 

dff_b dbO(pwReg[0],npwReg[0],inBus[0],hi, • 
dbl(pwReg[l],npwReg[l],inBus[1],hi, ■ 
db2(pwReg[2],npwReg[2],inBus[2],hi, ■ 
db3(pwReg[3],npwReg[3],inBus[3], hi,- 
db4(pwReg[4],npwReg[4],inBus[4],hi, ■ 
db5(pwReg[5],npwReg[5],inBus[5],hi, • 

-reset,latch), 
-reset,latch), 
-reset,latch), 
-reset,latch), 
-reset,latch), 
-reset,latch); 

xor #2 xeqO(xegOout,inBus[0],pwReg[0]), 
xegl(xeqlout,inBus[1],pwReg[1]), 
xeg2(xeg2 out,inBus[2],pwReg[2]), 
xeg3(xeg3out,inBus[3],pwReg[3]), 
xeg4(xeq4out,inBus[4],pwReg[4]), 
xeg5(xeq5out,inBus[5],pwReg[5]); 

nor #2  nrO(nr0out,xeq0out,xeqlout,xeq2out), 
nrl(nrlout,xeq3out,xeq4out,xeq5out); 

nand #2 ndO(pwDiff,nrOout,nrlout) ; 

initial begin 
hi=l; 

end 

endmodule 

.®, Figure 71. Pulse Width Register Structural model Verilog  source code. 
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5. Repetition Period Register 

// File: rp_reg_test.v 
// 
// Description:  Test bench for Repetition Period Register 

// 
// Author: Jeff Link 

module rp_reg_test; 

reg [5:0] inBus; 
reg latch,reset; 
wire [5:0] rpReg; 

// rp_reg_b regl (rpReg,rpDiff,inBus,latch,reset); 
rp_reg_s regl (rpReg,rpDiff,inBus,latch,reset); 

initial begin 
$display("\t\t\t inBus  rpReg rpDiff"); 
reset=l; 
#1 
reset=0; 
#1 
latch=l; 
#3 
for (inBus=2; inBus<63; inBus=inBus+5) begin 

#4 
latch=~latch; 
#20 
latch=~latch; 
#16; 

end 
#100 
$finish; 

end 

always @ (rpDiff) begin 
$display("time %0d  \t %b %b %b",$time,inBus,rpReg,rpDiff); 

end 

endmodule 

Figure 72. Repetition Period Register Test Bench Verflog" source code. 
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// File: rp_reg_b.v 
// 
// Description:  Repetition Period Register - behavioral model 

// 
// Author: Jeff Link 

module rp_reg_b (rpReg,rpDiff,inBus,latch, nReset); 

output [5:0] rpReg; 
output rpDiff; 
reg    [5:0] rpReg; 
reg   rpDiff; 
input  [5:0] inBus; 
input latch,nReset; 

always @ (posedge latch) begin 
if (nReset) 

#3 rpReg=inBus; 
end 

always @ (inBus) begin 
if (nReset) 

#4 rpDiff=(inBus!=rpReg); 
end 

always @ (rpReg) begin 
if (nReset) 

#4 rpDiff=(inBus!=rpReg); 
end 

always @ (negedge nReset) begin 
#1 rpReg=0; 

end 
endmodule  

Figure 73. Repetition Period Register Behavioral model Verilog" source code 
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// File: rp_reg_s.v 
// 
// Description:  Repetition Period Register - structural model 
// 
// Author: Jeff Link 
//******■***************************************************************** 

module rp_reg_s (rpReg,rpDiff,inBus,latch,reset); 

output [5:0] rpReg; 
output rpDiff; 
wire   [5:0] rpReg,nrpReg; 
input  [5:0] inBus; 
input latch,reset; 

reg   hi; 

dff_b dbO(rpReg[0],nrpReg[0],inBus[0],hi,-reset,latch), 
dbl(rpReg[l],nrpReg[l],inBus[1],hi,-reset,latch), 
db2(rpReg[2],nrpReg[2],inBus[2],hi,-reset,latch), 
db3(rpReg[3],nrpReg[3],inBus[3],hi,-reset,latch), 
db4(rpReg[4],nrpReg[4],inBus[4],hi,-reset,latch), 
db5(rpReg[5],nrpReg[5],inBus[5],hi,-reset,latch); 

xor #2  xeqO(xeqOout,inBus[0],rpReg[0]), 
xeql(xeqlout,inBus[1],rpReg[1]), 
xeq2(xeq2out,inBus[2],rpReg[2]), 
xeq3(xeq3 out,inBus[3],rpReg[3]), 
xeq4(xeq4out,inBus[4],rpReg[4]), 
xeq5(xeq5out,inBus[5],rpReg[5]); 

nor #2  nrO(nr0out,xeq0out,xeqlout,xeq2out), 
nrl(nrlout,xeq3out,xeq4out,xeq5out); 

nand #2 ndO(rpDiff,nr0out,nrlout); 

initial begin 
hi=l; 

end 

endmodule 

.® Figure 74. Repetition Period Register Structural model Verilog  source code. 
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D. TACTOR POWER CONTROLLER 

// File: pwr_cn.trl_test.v 
// 
// Description:  Test bench for Tactor Power Controller 
// 
// Author: Jeff Link 

module pwr_cntrl_test; 

reg  [5:0] pwReg,rpReg; 
reg tEnable; 

clock #(25) clkl (elk); 
// pwr_cntrl_b pcO (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk); 
pwr_cntrl_s pcO (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk); 

initial begin 
tEnable=0; 
pwReg=3; 
rpReg=2; 
$display("\t pwReg = %b  rpReg = %b\n",pwReg,rpReg); 
$display("\t\t\ttPwrl tPwr2"); 
$monitor("time %0d \t  %b  %b",$time,tPwrl,tPwr2); 
#2000 
tEnable=l; 
#2000000 
$finish; 

end 
endmodule 

Figure 75. Tactor Power Controller Test Bench Verilog® source code. 

// File: pwr_cntrl_b.v 
// 
// Description:  Tactor Power Controller - behavioral model 
// 
// Author: Jeff Link 
//♦a********************************************************************* 

module pwr_cntrl_b (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk); 

output tPwrl,tPwr2; 
wire  tPwrl,tPwr2; 
input  [5:0] pwReg, rpReg; 
input  tEnable, elk; 

clk_div_b  elkdiv (fr250, fr62, elk, -tEnable); 
pw_dncntr_b pwCntr (pwZero,pwReg,cntLd, cntClr,fr62); 
rp_dncntr_b rpCntr (rpGTl ,rpReg,cntLd,cntClr,fr62); 
pwr_logic_b pLogic (enPwr,cntLd,cntClr,tEnable,pwZero,rpGTl,fr62); 
pwr_osc_b  pOscil (tPwrl, tPwr2, enPwr, fr250); 

endmodule 

Figure 76. Tactor Power Controller Behavioral model Verilog  source code. 
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// *********************************************************************** 
// File: pwr_cntrl_s.v 
// 
// Description:  Tactor Power Controller - structural model 

// 
// Author: Jeff Link 
II *********************************************************************** 

module pwr_cntrl_s (tPwrl, tPwr2, pwReg, rpReg, tEnable, elk); 

output tPwrl,tPwr2; 
input  [5:0] pwReg, rpReg; 
input  tEnable, elk; 

clk_div_s  elkdiv (fr250, fr62, elk,reset); 
pw_dncntr_s pwCntr (npwZero,pwReg,cntLd,cntClr,fr62); 
rp_dncntr_s rpCntr (nrpGTl ,rpReg,cntLd,cntClr,fr62); 
pwr_logic_s pLogic (enPwr,cntLd,cntClr, tEnable,npwZero,nrpGTl,fr62); 
pwr_osc_s  pOscil (tPwrl, tPwr2, enPwr, fr250); 

not #1 ntO (reset,tEnable); 

endmodule   

Figure 77. Tactor Power Controller Structural model Verilog® source code. 
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1. Power Control Logic 

//A********************************************************************** 

// File: pwr_logic_test.v 
// 
// Description:  Test bench for Power Control Logic 
// 
// Author: Jeff Link 

module pwr_logic_test; 

reg enable,npwZero,nrpGTl; 

clock clkl (elk); 
// pwr_logic_b plO (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk); 
pwr_logic_s plO (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk); 

initial begin 
enable=0; 
npwZero=0; 
nrpGTl=l; 
$display("\t\t\tenPwr cntLd cntClr"); 
$monitor("time %0d \t %b    %b    %b",$time,enPwr,cntLd, cntClr); 
#25 
enable=l;  // 25 - 110 
#40 
npwZero=l;  // 65 - 100 
#20 
nrpGTl=0;   // 85 - 101 
#20 
npwZero=0;  //105 - 111 
#20 
nrpGTl=l;   //125 - 110 
#20 
npwZero=l; 
nrpGTl=0;   //145 - 101 
#20 
nrpGTl=l;   //165 - 100 
#20 
npwZero=0;  //185 - 111 
nrpGTl=0; 
#40; 
$finish; 

end 
endmodule 

Figure 78. Power Control Logic Test Bench Verilog® source code. 
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//*********************************************************************** 

// File: pwr_logic_b.v 
// 
// Description:  Power Control Logic - behavioral model 
// 
// Author: Jeff Link 
//*********************************************************************** 

module pwr_logic_b (enPwr,cntLd,cntClr,enable,pwZero,rpGTl,elk); 

output enPwr,cntLd,cntClr; 
reg enPwr,cntLd,cntC1r; 
input enable,pwZero,rpGTl,elk; 

always begin 
cntClr=~enable; 
enPwr=~pwZero; 
cntLd=~rpGTl; 

#1; 
end 

endmodule 

Figure 79. Power Control Logic Behavioral model Verilog® source code. 

//*********************************************************************** 

// File: pwr_logic_s.v 
// 
// Description:  Power Control Logic - structural model 
// 
// Author: Jeff Link 
// *********************************************************************** 

module pwr_logic_s (enPwr,cntLd,cntClr,enable,npwZero,nrpGTl,elk) ; 

output enPwr,cntLd,cntClr; 
reg   enPwr,cntLd; 
input enable,npwZero,nrpGTl,elk; 

not #1 ntO(cntClr,enable); 

always begin 
enPwr=npwZero; 
cntLd=nrpGTl; 
#1; 

end 

endmodule 

Figure 80. Power Control Logic Structural model Verilog® source code. 

130 



2. Power Oscillator 

// File: pwr_osc_test.v 

// 
// Description:  Test bench for Power Oscillator 
// 
// Author: Jeff Link 

module clk_div_test; 

reg    enable,- 
integer ii;      // loop counter 

clock #(50) clkO (elk); 
// pwr_osc_b  poO  (pwrl, pwr2, enable, elk); 
pwr_osc_s  poO  (pwrl, pwr2, enable, elk); 

initial begin 
$display(" \tpwrl pwr2 enable"); 
$monitor("time %0d \t %b   %b   %b",$time,pwrl,pwr2,enable) ,• 
enable=l; 
ii = 0; 
while (ii<12) begin 

#5; 
if (ii%3==2) 

enable=0; 
else 

enable=l; 
end 
$finish; 

end 

always @ (posedge elk) 
ii=ii+l; 

endmodule 

Figure 81. Power Oscillator Test Bench Verilog® source code. 
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//*********************************************************************** 

// File: pwr_osc _b.v 
// 
// Description: Power Oscillator - behavioral model 
// 
// Author: Jeff Link 
//*********************************************************************** 

module pwr_osc_b (pwrl, pwr2, enable, osc) ; 
output pwrl, pwr2; 
reg   pwrl, pwr2; 
input  enable, osc; 

always begin 
#2 
if (~enable) begin 
pwrl=0; 
pwr2=0; 

end 
else begin 
pwrl=osc; 
pwr2=~osc; 

end 
end 

endmodule 

.® Figure 82. Power Oscillator Behavioral model Verilog  source code 

// File: pwr_osc_s.v 
// 
// Description:  Power Oscillator - structural model 

// 
// Author: Jeff Link 

module pwr_osc_s (pwrl, pwr2, enable, osc); 
output pwrl, pwr2; 
wire  pwrl, pwr2; 
input enable, osc; 

nand #2 (npwrl,enable,osc), 
(npwr2,enable,nose); 

not     (nose,osc), 
(pwrl,npwrl), 
(pwr2,npwr2); 

endmodule 

Figure 83. Power Oscillator Structural model Verilog® source code. 
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3. Pulse Width Down Counter 

// File: pw_dncntr_test.v 
// 
// Description:  Test bench for Pulse Width Down Counter 
// 
// Author: Jeff Link 

module pw_dncntr_test; 

reg  [5:0] value; 
reg load,clear; 

clock   clkl (elk); 
// pw_dncntr_b down (npwZero,value,load,clear,elk); 
pw_dncntr_s down (npwZero,value,load,clear,elk); 

initial begin 
value=9; 
load=0; 
clear=l; 
$display("\t\t\t  nZro clear load"); 
$monitor("time %0d \t   %b   %b    %b",$time,npwZero,clear,load); 
#25 
load=l; 
#40 
clear=0; // 65 
#100 
load=0; // 165 
#100 
load=l ,- // 265 
#80 
load=0; // 345 
#400 // 745 
$finish; 

end 
endmodule 

Figure 84. Pulse Width Down Counter Test Bench Verilog® source code. 
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//A********************************************************************** 

// File: pw_dncntr_b.v 
// 
// Description:  Pulse Width Down Counter - behavioral model 
// 
// Author: Jeff Link 

module pw_dncntr_b (zeroCnt,value,load,clear,elk); 

output zeroCnt; 
reg   zeroCnt; 
reg   [5:0] count; 
input  [5:0] value; 
input load,clear,elk; 

initial 
count=0; 

always begin 
if (clear) 

count=0; 
if (zeroCnt & -load) 

count=0; 
zeroCnt=(count==0); 
#1; 

end 

always @(posedge elk) begin 
#3 
if (clear) 

count=0; 
if (load&-clear) 

count=value; 
if (~load&~clear&~zeroCnt) 

count=count-l; 
end 

I endmodule  

Figure 85. Pulse Width Down Counter Behavioral model Verilog® source code. 
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// File: pw_dncntr_s.v 
// 
// Description:  Pulse Width Down Counter - structural model 
// 
// Author: Jeff Link 

module pw_dncntr_s (npwZero,value,load,clear,elk); 

output npwZero; 
wire   [5:0] q,nq; 
input  [5:0] value; 
input  load,clear,elk; 
reg   hi; 

nor #2 nr3(nr3out,q[2],nd2out), 
nr5(nr5out,q[4],nd4out); 

nand #2 nd2(nd2out,nq[l],nq[0]), 
nd4(nd4out,nq[3],nr3out); 

xnor #2 xnl(xnlout,nq[0],nq[l]), 
xn2(xn2out,nd2out,q[2]), 
xn3(xn3out,nr3out,nq[3]), 
xn4(xn4out,nd4out,q[4]), 
xn5(xn5out,nr5out,nq[5]); 

tgmux_b tmO(tm0out,nq[0], value[0],load), 
tml(tmlout,xnlout,value[1],load), 
tm2(tm2out,xn2out,value[2],load), 
tm3(tm3 out,xn3 out,value[3],load), 
tm'4 (tm4out,xn4out,value[4] , load) , 
tm5(tm5out,xn5out,value[5],load); 

dff_b dcO(q[0],nq[0],tm0out,hi,dClr,elk), // count registers 
dcl(q[l],nq[l],tmlout,hi,dClr,elk), 
dc2(q[2],nq[2],tm2out,hi,dClr,elk), 
dc3(q[3],nq[3],tm3out,hi,dClr,elk), 
dc4(q[4],nq[4],tm4out,hi,dClr,clk), 
dc5(q[5],nq[5],tm5out,hi,dClr,clk); 

nor #2 nrO(nrOout,q[0],q[l],q[2]), 
nrl(nrlout,q[3],q[4],q[5]), 
nr2(nr2out,load,npwZero), 
nr3(dClr,  nr2out,clear); 

nand #2 ndO(npwZero,nrOout,nrlout); 

initial 
hi=l; 

always @ (q) begin 
$display("time %0d  \tcount is %b",$time,q); 

end 

endmodule 

Figure 86. Pulse Width Down Counter Structural model Verilog® source code. 
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4. Repetition Period Down Counter 

// File: rp_dncntr_test.v 
// 
// Description:  Test bench for Repetition Period Down Counter 
// 
// Author: Jeff Link 

module rp_dncntr_test; 

reg  [5:0] value; 
reg load,clear; 

clock   clkl (elk); 
// rp_dncntr_b down (nrpGTl,value,load,clear,elk); 
rp_dncntr_s down (nrpGTl,value,load,clear,elk); 

initial begin 
value=99; 
load=0; 
clear=l; 
$display("\t\t\t nrpGTl clear load"); 
$monitor("time %0d \t   %b    %b    %b",$time,nrpGTl,clear,load); 
#25 
load=l; 
#40 
clear=0;  // 65 
#100 
load=0;  // 165 
#100 ' • 
load=l;  // 265 
#80 
load=0;  // 345 
#5000     // 745 
$finish; 

end 
endmodule 

Figure 87. Repetition Period Down Counter Test Bench Verilog® source code. 
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//*********************************************************************** 
// File: rp_dncntr_b.v 
// 
// Description:  Repetition Period Down Counter - behavioral model 
// 
// Author: Jeff Link 
//*********************************************************************** 

module rp_dncntr_b (rpGTl,value,load,clear, elk); 

output rpGTl; 
reg   rpGTl,zeroCnt; 
reg    [7:0] count; 
input  [5:0] value; 
input  load,clear,elk; 

initial 
count=0; 

always begin 
if (clear) 

count=0; 
if (zeroCnt & -load) 

count=0; 
zeroCnt=(count==0); 
rpGTl  =(count>l); 
#1; 

end 

always @(posedge elk) begin 
#3 
if (clear)' 

count=0; 
if (load&~clear) 
count={value,2'bO 0}; 

if (~load&~clear&~zeroCnt) 
count=count-l; 

end 

endmodule 

Figure 88. Repetition Period Down Counter Behavioral model Verilog® source code. 

// *********************************************************************** 

// File: rp_dncntr_s.v 
// 
// Description:  Repetition Period Down Counter - structural model 

// 
// Author: Jeff Link 
// *********************************************************************** 

module rp_dncntr_s (nrpGTl,value,load,clear,elk); 
output nrpGTl; 

Figure 89. Repetition Period Down Counter Structural model Verilog® source code. 
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wire 
input 
input 
reg 

[7:0] q,nq; 
[5:0] value; 
load,clear,elk; 
hi,lo; 

nand #2 nd2(nd2out,nq[l],nq[0]) , 
nd4(nd4out,nq[3],nr3out) , 
nd6(nd6out,nq[5],nr5out) ; 

nor #2 nr3(nr3 out,q[2 J,nd2 out) , 
nr5(nr5out,q[4],nd4out), 
nr7(nr7out,q[6],nd6out); 

xnor #2 xnl(xnlout,nq[0],nq[l]) , 
xn2(xn2out,nd2out,q[2]), 
xn3(xn3out,nr3out,nq[3]), 
xn4(xn4out,nd4out,q[4]), 
xn5(xn5out,nr5out,nq[5]), 
xn6(xn6out,nd6out,q[6]), 
xn7(xn7out,nr7out,nq[7]); 

tgmux_b tmO(tm0out,nq[0], lo, 
tml(tmlout,xnlout,lo, 
tm2(tm2out,xn2out,value[0] 
tm3(tm3 out,xn3 out,value[1] 
tm4(tm4 out,xn4 out,value[2] 
tm5(tm5out,xn5out,value[3] 
tm6(tm6out,xn6out,value[4] 
tm7(tm7out,xn7out,value[5] 

load), 
load), 
load), 
load), 
load), 
load), 
load), 
load); 

dff_b dc0(q[0],nq[0],tm0out,hi,dClr,elk), 
dcl(q[l],nq[l],tmlout,hi,dClr,elk), 
dc2(q[2],nq[2],tm2out,hi,dClr,elk), 
dc3(q[3],nq[3],tm3out,hi,dClr,elk), 
dc4(q[4],nq[4],tm4out,hi,dClr,elk), 
dc5(q[5],nq[5],tm5out,hi,dClr,elk), 
dc6(q[6],nq[6],tm6out,hi,dClr,elk), 
dc7(q[7],nq[7],tm7out,hi,dClr,elk); 

// count registers 

nor #2 nrO(nrOout,q[l],q[2]) , 
nrl(nrlout,q[3],q[4]) , 
nr2(nr2out,q[5],q[6],q[7]) 
nr4(nr4out,load,ZCnt) , 
nr6(dClr,  nr4out,clear); 

nand #2 ndO(ZCnt,nq[0],nrpGTl); 

and #2 anO(nrpGTl,nr0out,nrlout,nr2out); 

initial 
hi=l; 
lo=0; 

end 

begin 

always @(q) begin 
$display("time %0d \tcount is %b",$time,q); 

end 
endmodule 

,®. Figure 89. Repetition Period Down Counter Structural model Verilog  source code, 
(continued) 
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5. Clock Divider 

// File: clk_div_test.v 
// 
// Description:  Test bench for Clock Divider 
// 
// Author: Jeff Link 

module clk_div_test; 

reg    reset; 
integer ii;      // loop counter 

clock #(50) clkO (elk); 
//  clk_div_b   cdO  (fr250, fr62, elk, reset); 
clk_div_s   cdO  (fr250, fr62, elk, reset); 

initial begin 
$display(" \tfr250 fr62"); 
$monitor("time %0d \t %b   %b",$time,fr250,fr62); 
reset=l; 
#2 
reset=0; 
ii = 0; 
while (ii<3) begin 

#5; 
end 
$finish; 

end 

always @ (posedge fr62) 
ii=ii+l; 

endmodule 

Figure 90. Clock Divider Test Bench Verilog® source code. 
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//*********************************************************************** 

// File: clk_div_b.v 
// 
// Description:  Clock Divider - behavioral model 
// 
// Author: Jeff Link 
//************************************************ ****** ***************** 

vdefine base 64 

module clk_div_b (fr250, fr62, elk, reset); 
output fr250, fr62; 
reg   fr250, fr62; 
input elk, reset; 
integer countl; 

initial begin 
countl=0; 
fr250=0; 
fr62=0; 

end 

always @(posedge elk)  begin 
if (-reset) begin 

countl = countl+1; 
if (countl%,base == 0) begin 

fr250 = ~fr250; 
end 
if (countl%(4*'base) == 0) begin 

fr62 = ~fr62; 
countl =0; 

end 
end 

end 

always begin 
#1 
if (reset) begin 
countl =0; 

end 
end 

endmodule   

,® . Figure 91. Clock Divider Behavioral model Verflog  source code 

// *********************************************************************** 

// File: clk_div_s.v 
// 
// Description:  Clock Divider - structural model 
// 
// Author: Jeff Link 
//*********************************************************************** 

Figure 92. Clock Divider Structural model Verflog® source code. 
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module clk_div. _s (fr250, fr62, elk, reset); 
output fr250 fr62; 
reg fr250 f r62 ; 

wire [13:0 q,nq; 
input elk, reset; 
reg hi; 

not #1 ntO (nReset reset) 

dff_b dcO (q[0], nq[0]. nq[0], hi nReset elk) // count registers 
del <g[l], nq[l], tdlin, hi nReset elk) 
dc2 (g[2], nq[2], td2in, hi nReset elk) 
dc3 (q[3], nq[3], td3in, hi nReset elk) 
dc4 (q[4], nq[4], td4in, hi nReset elk), 
dc5 (g[5], ng[5], td5in, hi nReset elk) , 
dc6 (g[6], ng[6], td6in, hi nReset elk) , 
dc7 (g[7], ng[7], td7in, hi nReset elk) , 
dc8 (g[8], ng[8], td8in, hi nReset elk), 
dc9 <g[9], ng[9], td9in, hi nReset elk) , 
dclO (g[10] nq[10] tdl0in,hi nReset elk) , 
dell (g[ll] ng[ll] tdllin,hi nReset elk) , // 250 Hz for 1 MHz elk 
dcl2 (g[l2] nq[12] tdl2in,hi nReset elk) , 
dcl3 (g[l3] nq[13] tdl3in,hi nReset elk) , 

xor #2 xrl 
xr2 
xr3 
xr4 
xr5 
xr6 
xr7 
xr8 
xr9 

tdlin, 
td2in, 
td3in, 
td4in, 
td5in, 
td6in, 
td7in, 
td8in, 
td9in, 

q[0], 
nd2out 
nr3out 
nd4out 
nr5out 
nd6out 
nr7out 
nd8out 
nr9out 

qdl), 
nq[2]), 
q[3]), 
nq[4]), 
q[5]), 
nq[6]), 
q[7]), 
ng[8]), ■ 
q[9]), 

' 

xrlO tdlOin ndl0out,nq[10]) , 

xrll tdllin nrllout,q[ll]), 
xrl2 tdl2in ndl2out,nq[12]), 
xrl3 tdl3in nrl3out,g[13]); 

nand #2 nd2 
nd4 
nd6 
nd8 

nd2out 
nd4out 
nd6out 
nd8out 

g[l], 
g[3], 
g[5], 
g[7], 

g[0]), 
nr3out), 
nr5out), 
nr7out), 

ndlO ndl0out,g[9], nr9out), 
ndl2 ndl2out,g[ll] nrllout); 

nor #2 nr3 
nr5 
nr7 
nr9 

nr3out 
nr5out 
nr7out 
nr9out 

nq[2] 
nq[4] 
nq[6] 
nq[8] 

nd2out), 
nd4out), 
nd6out), 
nd8out), 

nrll nrllout,nq[10 ,ndl0out) 
nrl3 nrl3out,nq[12 ,ndl2out) 

initial 
hi=l ; 

always begir l 
fr250 = nq 3];  // used ^ rice  11 for simulation speed 
fr62 = nq 5]; 
#1; 

end 

endmodule 

,® Figure 92. Clock Divider Structural model Verilog   source code, (continued) 
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E. SUPPORT COMPONENTS 

1. Clock with Parametric Half-Period 

// *********************************************************************** 
// File: clock_test.v 
// 
// Description:  Test bench for Clock with Parametric Half-Period 

// 
// Author: Jeff Link 
//*********************************************************************** 

module dff_test; 

clock clokl (clkl) 
clock #(50) clok2 (clk2) 
clock #(100) clok3 (clk3) 

initial begin 
$display("\t\t\tclkl clk2 clk3"); 
$monitor("time %0d \t %b   %b.   %b",$time,clkl,clk2,clk3) 
#501 
$finish; 

end 
endmodule   

Figure 93. Clock with Parametric Half-Period Test Bench Verflog® source code. 

//*********************************************************************** 

// File: clock.v 
// 
// Description:  Clock with Parametric Half-Period 
// 
// Author: Jeff Link 
,,*********************************************************************** 

module clock (elk) ; 
parameter delay=10; 
output  elk; 
reg    elk; 
initial 
elk = 1; 

always 
#(delay) elk = -elk; 

endmodule   

® 
Figure 94. Clock with Parametric Half-Period Behavioral model Verilog   source code 
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2. D flip-flop, positive edge triggered 

// File: dff_test.v 
// 
// Description:  Test bench for D flip-flop 
// 
// Author: Jeff Link 

module dff_test; 

reg d,nP,nC; 
wire elk; 

clock clkl (elk); 
dff_b dffl (q,nq,nq,nP,nC,clk); 

initial begin 
d=l; 
nP=l; 
nC=0 ; 
$display("\t\t\tg nq d nP nC"); 
$monitor("time %0d \t%b %b %b %b %b",$time,q,nq,d,nP,nC); 
#12 
nC=l; 
#20 
d=0; 
#20 
nP=0; 
#20 
nP=l; 
#20 
d=l; 
#20 
nC=0; 
#20 
nC=l; 
#20 
d=0; 
$finish; 

end 
endmodule 

Figure 95. D flip-flop Test Bench Verilog® source code. 
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// File: dff_b.v 
// 
// Description:  D flip-flop, positive edge triggered - behavioral model 

// 
// Author: Jeff Link 

module dff_b (q,nq,d,nP,nC,elk); 

output q,nq; 
reg q,nq; 
input d,nP,nC,clk; 

always @(posedge elk) begin 
if (nP&nC) begin 
q = #3 d; 
nq = ~q; 

end 
end 

always begin 
#1 
if (~nC) begin 

q=0; 
nq=l; 

end 
end 

always begin 
#1 
if (-nP&nC) begin 

q=l; 
nq=0; 

end 
end 

endmodule   

Figure 96. D flip-flop Behavioral model Verilog® source code. 
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3. Transmission Gate MUX 

//••••••a**************************************************************** 

// File: tgmux_test.v 
// 
// Description: Test bench for Transmission Gate MUX 
// 
// Author: Jeff Link 
//••••••••a************************************************************** 

module tgate_test; 

reg Ain,Bin,select; 

tgmux_b muxl (out,Ain,Bin,select); 

initial begin 
Ain=l; 
Bin=0; 
select=0; 
$display("\t\t\tout Ain Bin sei"); 
$monitor("time %0d \t %b  %b  %b  %b",$time,out,Ain,Bin,select); 
#10 select=l; 
#10 select=0; 
#10 
Ain=0; 
Bin=l; 
#10 select=l; 
#10 select=0; 
#20; 
$finish; 

end 
endmodule 

Figure 97. Transmission Gate MUX Test Bench Verflog® source code. 

// File: tgmux_b.v 
// 
// Description:  Transmission Gate MUX - behavioral model 
// 
// Author: Jeff Link 

module tgmux_b (out,Ain,Bin,select); 

output out; 
reg out; 
input Ain,Bin,select; 

always 
#1 
if (select) 

out = Bin; 
else 

out = Ain; 
endmodule 

Figure 98. Transmission Gate MUX Behavioral model Verflog® source code. 
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APPENDIX B. SYSTEM DESIGN SCHEMATICS 

This appendix provides the design schematics for the Tactor Interface Chip 

elements. The schematics were initially designed by hand using circuit examples contained 

in References 1 and 8. After the circuits were iteratively revised and simulated, the designs 

were reproduced graphically for reference and documentation. The schematics diagrams are 

divided into sections based on their parent functional module. 

A. SERIAL DATA RECEIVER 

1. Twelve-Bit Input Shift Register 

12 bit Shift Register 

Serial Data Input 
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D      Q 
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Q     D 

D       Q 

>Clk_Q|o 
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.Clr 
■dQ Clk<H 

Q    o 

D      Q 
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Clr 

^Clr 
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Q     D 

D      Q 

pf'Cij^Qp- 
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_Clr 
Q Clk< 

Q      D 
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Figure 99. Structural Schematic for the Twelve-Bit Shift Register. 
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2. Eight-Bit Data Latch 

8 bit Data Latch 
Input Bus 
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Figure 100. Structural Schematic for the Eight-Bit Data Latch. 

3. Input Stream Validity Check 

Input Stream Validity Check 
Input[0] 

Figure 101. Structural Schematic for the Input Stream Validity Check. 
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C. COMMAND DECODER AND CONTROLLER 

1. Command Sequence Controller 

Command Sequence Controller 

nValidAddr 

clock 

nReset 

busValid 

cmdBus[7] 

cmdBus[0] 

pwDiff 

rpDiff 

D      Q 

>Clk_Q|> 
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pwLatch 
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Figure 102. Structural Schematic for the Command Sequence Controller. 
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2. Address Comparator 

addrRef[0] 

addrRef[6] 

cmdBus[7] 

cmdBus[0] 

Address Comparitor 

nValidAddr 

Figure 103. Structural Schematic for the Address Comparator. 
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3. Pulse Width Register 

latch 

nReset 

cmdBus[5] 

cmdBus[0] 

Pulse Width Register 
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Figure 104. Structural Schematic for the Pulse Width Register. 
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4. Repetition Period Register 
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nReset 
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Figure 105. Structural Schematic for the Repetition Period Register. 
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D. TACTOR POWER CONTROLLER 

1. Power Control Logic 

Power Control Logic 
enOutput cntClear 

npwZero enPower 

nrpGTl cntLoad 

Figure 106. Structural Schematic for the Power Control Logic. 

2. Power Oscillator 

Power Oscillator 
oscFreq 

enPower 

pwrla 

pwrlb 

pwr2a 

pwr2b 

Figure 107. Structural Schematic for the Power Oscillator. 
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3. Pulse Width Down Counter 

Pulse Width Down Counter 
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Figure 108. Structural Schematic for the Pulse Width Down Counter. 
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4. Repetition Period Down Counter 

Repetition Period Down Counter 
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Figure 109. Structural Schematic for the Repetition Period Down Counter. 
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5. Clock Divider 
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Figure 110. Structural Schematic for the Clock Divider. 
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APPENDIX C. STRUCTURAL EVALUATION USING SPICE 

SPICE is a circuit simulation program developed by Dr. Lawrence Nagel in the 

Department of Electrical Engineering and Computer Sciences at the University of 

California, Berkely. The SPICE model for FETs allows defining the semiconductor devices 

using pertinent parameter values. This capability affords designers the opportunity to 

accurately simulate circuits for evaluation of response time and power consumption. 

Reference 7 provides a comprehensive presentation of SPICE commands and conventions. 

The structural designs presented in Appendix B were evaluated with SPICE to verify 

circuit response. This appendix documents the SPICE code used for evaluating TIC 

component design. Testing was limited to representative inputs since circuit behavior was 

thoroughly evaluated using the Verilog® models presented in Appendix A. Clocked TIC 

components were tested at 20 MHz instead of the design speed of 1 MHz to allow a safety 

margin for system speed and to reduce the SPICE simulation time. A brief discussion of 

each simulation is included to highlight the critical circuit response points. 

A. GENERAL DEFINITION FILES 

Modeling the TIC circuits required inclusion of FET parameters in all SPICE source 

code files. Each logic element must be defined as a compilation of FETs since the circuits 

were defined using fundamental logic elements rather than individual transistors. These 

logic element definitions must also be included in all SPICE source code files. These two 

inclusion requirements are separated into two different files to provide three levels of 

physical component abstraction. 
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1. CMOS FET Model Parameters 

The CMOS FET model parameters are provided by the expected VLSI chip 

manufacturer. The parametric values are actually determined using a combination of 

theoretical response and empirical measurements. These FET definitions are stored in a 

separate file that must be included in every circuit definition. This separation ensures the 

latest updated values are automatically used every time a SPICE simulation is executed. A 

listing of the CMOS FET model definitions is included as Figure 111. Reference 9 contains 

a detailed description of each of the FET model parameters. 

* cmos.cir ==> CMOS PFET & NFET model definitions 

* MOSIS PARAMETRIC TEST RESULTS 
* DATE:  1 OCTOBER 1997 
* RUN: N78K 
* VENDOR: ORBIT 
* TECHNOLOGY: SCNA20 
* FEATURE SIZE: 2.0 MICRONS 

.MODEL CMOSN NMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=1 
+ VTO=0.8309 DELTA=3.2570E+00 LD=3.2850E-07 KP=6.2842E-05 
+ UO=742.5 UEXP=1.9200E-01 UCRIT=2.1830E+04 RSH=6.1490E+00 
+ GAMMA=0.5612 NSUB=6.7970E+15 NFS=9.0930E+10 VMAX=5.7540E+04 
+ LAMBDA=4.2800E-02 CGDO=4.1704E-10 CGSO=4.1704E-10 
+ CGBO=3.4581E-10 CJ=1.2204E-04 MJ=6.3602E-01 CJSW=5.5150E-10 
+ MJSW=2.5691E-01 PB=4.4514E-01 
* Weff = Wdrawn - Delta_W 
* The suggested Delta_W is 2.0000E-09 

.MODEL CMOSP PMOS LEVEL=2 PHI=0.700000 TOX=4.0800E-08 XJ=0.200000U TPG=-1 
+ VTO=-0.9891 DELTA=1.2110E+00 LD=3.7130E-07 KP=1.7503E-05 
+ UO=206.8 UEXP=2.8220E-01 UCRIT=1.1030E+05 RSH=1.0210E-01 
+ GAMMA=0.7803 NSUB=1.3140E+16 NFS=7.1500E+11 VMAX=1.2110E+05 
+ LAMBDA=5.3880E-02 CGDO=4.7138E-10 CGSO=4.7138E-10 
+ CGBO=3.5113E-10 CJ=3.2670E-04 MJ=6.2773E-01 CJSW=3.7671E-10 
+ MJSW=1.9873E-01 PB=9.0000E-01 
* Weff = Wdrawn - Delta_W 
* The suggested Delta_W is 2.3340E-08 

Figure 111. CMOS PFET and NFET SPICE model definitions. 
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2. Fundamental Logic Element Definitions 

The TIC circuits are defined as combinations of discrete logic elements, thus each 

element must be defined in terms of the FETs used to implement the logic function. These 

fundamental logic element definitions are required in every TIC component source file. 

SPICE provides a convenient method for defining a collection of FETs as an element using 

the sub-circuit function. The file listing in Figure 112 defines all of the logic elements used 

in the SPICE simulation source files. This file is imported in every TIC component file 

using the . INCLUDE command. The CMOS FET definitions are available to all source 

files since the sub-circuit file includes the CMOS FET definition file as one of its first lines. 

* subckt.cir ==> CMOS SUB-CIRCUITS for inclusion into other models 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 

* Inverter Circuit 
* define INV - In Out Vdd Gnd 
.SUBCKT INV i o v g 
Ma v i o v CMOSP W=6U L=2U 
Mb o i g g CMOSN W=3U L=2U 
.ENDS 

* Inverter Circuit - extra large 
* define INVx - In Out Vdd Gnd 
.SUBCKT INVx i o v g 
Ma v i o v CMOSP W=12U L=2U 
Mb o- i g g CMOSN W=6U L=2U 
.ENDS 

* Transmission Gate Circuit 
* define XGATE - In Out Pgate Ngate Vdd Gnd 
.SUBCKT XGATE i o p n v g 
Ma i p o v CMOSP W=6U L=2U 
Mb i n o g CMOSN W=3U L=2U 
.ENDS 

* 2-input NAND Circuit 
* define NAND2 - Ain Bin Out Vdd Gnd 
.SUBCKT NAND2 a b o v g 
Ma v a o v CMOSP W=6U L=2U 
Mb o a 2 g CMOSN W=3U L=2U 
Mc v b o v CMOSP W=6U L=2U 
Md 2 b g g CMOSN W=3U L=2U 
. ENDS 

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions. 
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* 2-input AND Circuit 
* define AND2 - Ain Bin Out Vdd Gnd 
-SUBCKT AND2 a b o v g 
Xla a b 2 v g NAND2 
Xia 2 o v g INV 
.ENDS 

* 3-input NAND Circuit 
* define NAND3 - Ain Bin Cin Out Vdd Gnd 
.SUBCKT NAND3 a b c o v g 
Ma v a o v CMOSP W=6U L=2U 

g CMOSN W=3U L=2U 
v CMOSP W=6U L=2U 
g CMOSN W=3U L=2U 
v CMOSP W=6U L=2U 
g CMOSN W=3U L=2U 

* 3-input AND Circuit 
* define AND3 - Ain Bin Cin Out Vdd Gnd 
.SUBCKT AND3 a b c o v g 
Xla a b c 2 v g NAND3 
Xia 2 o v g INV 
.ENDS 

* 4-input NAND Circuit 
* define NAND4 - Ain Bin Cin Din Out Vdd Gnd 
.SUBCKT NAND4 a b c d o v g 

Mb o a 2 
Mc v b o 
Md 2 b 3 
Me v c o 
Mf 3 c g 
.ENDS 

Ma v a o V CMOSP W=6U L=2U 
Mb o a 2 g CMOSN W=3U L=2U 
Mc v b o V CMOSP W=6U L=2U 
Md 2 b 3 g CMOSN W=3U L=2U 
Me v c o V CMOSP W=6U L=2U 
Mf 3 c 4 g CMOSN W=3U L=2U 
Mg v d 0 V CMOSP W=6U L=2U 
Mh 4 d g g CMOSN W=3U L=2U 
.ENDS 

* 4-input AND Circuit 
* define AND4 - Ain Bin Cin Din Out Vdd Gnd 
.SUBCKT AND4 a b c d o v g 
Xla a b c d 2 v g NAND4 
Xia 2 o v g INV 
.ENDS 

* 2-input NOR Circuit 
* define NOR2 - Ain Bin Out Vdd Gnd 
.SUBCKT N0R2 a b o v g 
Ma v a 2 v CMOSP W=6U L=2U 
Mb o a g g CMOSN W=3U L=2U 
Mc 2 b o v CMOSP W=6U L=2U 
Md o b g g CMOSN W=3U L=2U 
.ENDS 

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions, 
(continued) 
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* 2-input OR Circuit 
* define OR2 - Ain Bin Out Vdd Gnd 
.SUBCKT OR2 a b o v g 
Xla a b 2 v g N0R2 
Xia 2 o v g INV 
.ENDS 

* 3-input NOR Circuit 
* define N0R3 - Ain Bin Cin Out Vdd Gnd 
.SUBCKT NOR3 a b c o v g 
Ma v a 2 v CMOSP W=6U L=2U 
Mb o a g g CMOSN W=3U L=2U 
Mc 2 b 3 v CMOSP W=6U L=2U 
Md o b g g CMOSN W=3U L=2U 
Me 3 c o v CMOSP W=6U L=2U 
Mf o c g g CMOSN W=3U L=2U 
. ENDS 

* 3-input OR Circuit 
* define OR3 - Ain Bin Cin Out Vdd Gnd 
.SUBCKT OR3 a b c o v g 
Xla a b c 2 v g N0R3 
Xia 2 o v g INV 
. ENDS 

* D-Flip/Flop using transmission gates 
* define DFLOPG - Din CLKin Qout nQout Vdd Gnd 
.SUBCKT DFLOPG d elk q nq v g 
Ma v 3 6 v CMOSP W=6U L=2U 
Mb 7 3 g g CMOSN W=3U L=2U 
Mc 6 5 2 v CMOSP W=6U L=2U 
Md 2 elk 7 g CMOSN W=3U L=2U 
Xga d 2 elk 5 v g XGATE 
Xgb 3 4 5 elk v g XGATE 
Xgc 4 nq elk 5 v g XGATE 
Xia q nq v g INV 
Xib elk 5 v g INV 
Xic 2 3 v g INV 
Xid 4 q v g INV 
.ENDS 

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions, 
(continued) 
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* Gated D-Flip/Flop w/ nClear using transmission gates 
* define DFLOPGC - Din CLKin nCin Qout nQout Vdd Gnd 
.SUBCKT DFLOPGC d elk nc g nq v g 
Ma v 2 3 v CMOSP W=6U L=2U 
Mb 3 2 9 g CMOSN W=3U L=2U 
Me v nc 3 v CMOSP W=6U L=2U 
Mf 9 nc g g CMOSN W=3U L=2U 
Mg v 2 10 v CMOSP W=6U L=2U 
Mh 11 3 g g CMOSN W=3U L=2U 
Mi 10 5 2 v CMOSP W=6U L=2U 
Mj 2 elk 11 g CMOSN W=3U L=2U 
Mk 12 4 g v CMOSP W=6U L=2U 
Ml q 4 g g CMOSN W=3U L=2U 
Mo v 6 12 v CMOSP W=6U L=2U 
Mp q 6 g g CMOSN W=3U L=2U 
Xga d 2 elk 5 v g XGATE 
Xgb 3 4 5 elk v g XGATE 
Xgc 4 ng elk 5 v g XGATE 
Xia g ng v g INV 
Xib elk 5 v g INV 
Xic nc 6 v g INV 
.ENDS 

* Gated D-Flip/Flop w/ nClear & nPreset using transmission gates 
* define DFLOPGCP - Din CLKin nCin nPin Qout nQout Vdd Gnd 
.SUBCKT DFLOPGCP d elk nc np g ng v g 
Ma 8 2 3 v CMOSP W=6U L=2U 
Mb 3 2 9 g CMOSN W=3U L=2U 
Mc v 7 8 v CMOSP W=6U L=2U 
Md 3 7 9 g CMOSN W=3U L=2U 
Me v nc 3 v CMOSP W=6U L=2U 
Mf 9 nc g g CMOSN W=3U L=2U 
Mg v 2 10 v CMOSP W=6U L=2U 
Mh 11 3 g g CMOSN W=3U L=2U 
Mi 10 5 2 v CMOSP W=6U L=2U 
Mj 2 elk 11 g CMOSN W=3U L=2U 
Mk 12 4 g v CMOSP W=6U L=2U 
Ml g 4 13 g CMOSN W=3U L=2U 
Mm 12 np g v CMOSP W=6U L=2U 
Mn 13 np g g CMOSN W=3U L=2U 
Mo v .6 12 v CMOSP W=6U L=2U 
Mp g 6 g g CMOSN W=3U L=2U 
Xga d 2 elk 5 v g XGATE 
Xgb 3 4 5 elk v g XGATE 
Xgc 4 ng elk 5 v g XGATE 
Xia g ng v g INV 
Xib elk 5 v g INV 
Xic nc 6 v g INV 
Xid np 7 v g INV 
.ENDS 

* Toggle Flip/Flop w/ nClear using transmission gates 
* define TFLOPC - Tin CLKin nCin Qout nQout Vdd Gnd 
.SUBCKT TFLOPC telknegngvg 
Xia t g 2 v g XOR2 
Xda 2 elk nc g ng v g DFLOPC 
.ENDS 

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions, 
(continued) 
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* 2-input XOR Circuit 
* define XOR2 - Ain Bin Out Vdd Gnd 
.SUBCKT XOR2 a b o v g 
Ma v a 2 v CMOSP W=6U L=2U 

a g g CMOSN W=3U L=2U 
a 4 v CMOSP W=6U L=2U 
3 o v CMOSP W=6U L=2U 
b 6 g CMOSN W=3U L=2U 
a g g CMOSN W=3U L=2U 
b 5 v CMOSP W=6U L=2U 
2 o v CMOSP W=6U L=2U 
3 7 g CMOSN W=3U L=2U 
2 g g CMOSN W=3U L=2U 
b 3 v CMOSP W=6U L=2U 
b g g CMOSN W=3U L=2U 

Mb 2 
Mc v 
Md 4 
Me o 
Mf 6 
Mg v 
Mh 5 
Mi o 
Mj 7 
Mk v 
Ml 3 
.ENDS 

* 2-input XNOR Circuit 
k  define XNOR2 - Ain Bin Out Vdd Gnd 
.SUBCKT XN0R2 a b o v g 
Ma v a 2 V CMOSP W=6U L=2U 
Mb 2 a g g CMOSN W=3U L=2U 
Mc V a 4 V CMOSP W=6U L=2U 
Md 4 b o V CMOSP W=6U L=2U 
Me o 3 6 g CMOSN W=3U L=2U 
Mf 6 a g g CMOSN W=3U L=2U 
Mg v 2 5 V CMOSP W=6U L=2U 
Mh 5 3 o V CMOSP W=6U L=2U 
Mi o 2 7 g CMOSN W=3U L=2U 
Mj 7 b sr g CMOSN W=3U L=2U 
Mk v b 3 V CMOSP W=6U L=2U 
Ml 3 b g g CMOSN W=3U L=2U 
.ENDS 

"  2-input MUX Circuit 
* define MUX - Ain Bin Sei Out Vdd Gnd 
.SUBCKT MUX a b s o v g 
Ma 
Mb 
Mc 
Md 
Me 
Mf 

v CMOSP W=6U 
g CMOSN W=3U 
v CMOSP W=6U 
g CMOSN W=3U 
v CMOSP W=6U 
g CMOSN W=3U 

=2U 
=2U 
=2U 
=2U 
=2U 
=2U 

.ENDS 

Figure 112. Subcircuits for Fundamental Logic Element SPICE model definitions, 
(continued) 
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B. SERIAL DATA RECEIVER 

The SPICE model for the Serial Data Receiver is a combination of the models for its 

subordinate components. A full source code listing is provided in Figure 113. The Serial 

Data Receiver response is shown in Figure 114. The command packet "0011111110 

1" is simulated into the serial data input for the receiver. When the last bit of the valid 

command is received, the receiver latches the command onto the command bus and 

provides a bus data valid signal to the other TIC modules. The bus data valid signal is held 

for ten clock cycles and it is then cleared in preparation for the next possible command 

packet. The command bus values are not changed until another command is received or 

until the system is reset. The clearing action at 1.8 p,S in Figure 114 is caused by a system 

reset signal inserted to verify the Serial Data Receiver reset response. 

* SerialDataReceiver.cir ==> Serial Data Receiver Transient Characterxstics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
Vd  d 0 PWL(0 5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0 
799.5n 0 801.5n 5 15) 
Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0) 
Vclk elk 0 PULSE(0 5 24.5N IN IN 24N 50N) 

* Twelve-bit shift register 
XsdO d elk nR iO niO 1 0 DFLOPGC 
Xsdl iO elk nR il nil 1 0 DFLOPGC 
Xsd2 il elk npC i2 ni2 1 0 DFLOPGC 
Xsd3 i2 elk npC i3 ni3 1 0 DFLOPGC 
Xsd4 i3 elk npC 14 ni4 1 0 DFLOPGC 
Xsd5 i4 elk npC i5 ni5 1 0 DFLOPGC 
Xsd6 i5 elk npC i6 ni6 1 0 DFLOPGC 
Xsd7 i6 elk npC i7 ni7 1 0 DFLOPGC 
Xsd8 i7 elk npC i8 ni8 1 0 DFLOPGC 
Xsd9 i8 elk npC i9 ni9 1 0 DFLOPGC 
XsdlO i9 elk npC ilO nilO 1 0 DFLOPGC 
Xsdll ilO elk npC ill nill 1 0 DFLOPGC 
Xsi rst nR 1 0 INV 
Xsnr rst pC npC 1 0 NOR2 

Figure 113. Serial Data Receiver SPICE model source code. 
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* Eight- -bit data latch 
XldO i2 latch nR gO ngO 1 0 DFLOPGC 
Xldl i3 latch nR gl ngl 1 0 DFLOPGC 
Xld2 i4 latch nR g2 ng2 1 0 DFLOPGC 
Xld3 i5 latch nR g3 ng3 1 0 DFLOPGC 
Xld4 i6 latch nR g4 ng4 1 0 DFLOPGC 
Xld5 i7 latch nR g5 ng5 1 0 DFLOPGC 
Xld6 i8 latch nR g6 ng6 1 0 DFLOPGC 
Xld7 i9 latch nR g7 ng7 1 0 DFLOPGC 

* Input stream validity check 
XvxO il i2 xoO 1 0 XOR2 
Xvxl i3 i4 xol 1 0 XOR2 
Xvx2 i5 i6 xo2 1 0 XOR2 
Xvx3 i7 i8 xo3 1 0 XOR2 
Xvx4 i9 xo3 xo4 1 0 XOR2 
Xvx5 xoO xol xo5 1 0 XOR2 
Xvx6 xo2 xo4 xo6 1 0 XOR2 
Xvx7 xo5 xo6 xo7 1 0 XOR2 
XvaO iO ill aoO 1 0 NAND2 
Xval nilO xo7 aol 1 0 NAND2 
XvnO aoO aol frm 1 0 NOR2 
XviO frm nfrm 1 0 INV 
Xvnl nbdv nilO ill nol 1 0 NOR3 
Xvn2 nfrm elk latch 1 0 NOR2 
Xvn3 rst nol no3 1 0 NOR2 
XvdO frm latch no3 bdv nbdv 1 0 DFLOPGC 
Xva2 bdv frm pC 1 0 AND2 

* Simulation Parameters 
.TRAN .IN 2000N 0 In 

.END 

Figure 113. Serial Data Receiver SPICE model source code, (continued) 
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Serial Data Receiver Response 
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Figure 114. Serial Data Receiver SPICE model response. 
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1. Twelve-Bit Input Shift Register 

The SPICE model for the twelve-bit input shift register implements the structural 

design of Figure 99. A full source code listing is provided in Figure 115. The command 

packet "0 0 1 1 1 1 1 1 1 0 1" is simulated into the serial data input for the shift register. The 

shift register response is shown in Figure 116, which illustrates the input bits shift one 

position at every clock cycle. The clearing action at 1.7 |iS in Figure 116 is caused by a 

partial-clear signal; demonstrating that only the highest ten bits are cleared. The clearing 

action at 1.8 \iS is caused by a reset signal; demonstrating that all bits are cleared for a 

system reset. 

* shiftl2.cir ==> Twelve-Bit Shift Register Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
Vd  d  0 PWL(0 5 299.5n 5 301.5n 0 399.5n 0 401.5n 5 749.5n 5 751.5n 0 

799.5n 0 801.5n 5 15) 
Vrst rst 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0) 
Vpc  pC  0 PWL(0 0 1695n 0 1696n 5 1699n 5 1700n 0) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

* Twelve-bit shift register 
XdO d elk nR qO ngO 1 0 DFLOPGC 
Xdl qO elk nR ql nql 1 0 DFLOPGC 
Xd2 ql elk npC q2 nq2 1 0 DFLOPGC 
Xd3 q2 elk npC q3 nq3 1 0 DFLOPGC 
Xd4 q3 elk npC q4 nq4 1 0 DFLOPGC 
Xd5 q4 elk npC q5 nq5 1 0 DFLOPGC 
Xd6 q5 elk npC q6 nq6 1 0 DFLOPGC 
Xd7 q6 elk npC q7 nq7 1 0 DFLOPGC 
Xd8 q7 elk npC q8 nq8 1 0 DFLOPGC 
Xd9 q8 elk npC q9 nq9 1 0 DFLOPGC 
XdlO q9 elk npC qlO nqlO 1 0 DFLOPGC 
Xdll qlO elk npC qll nqll 1 0 DFLOPGC 
Xi rst nR 1 0 INV 
Xnr rst pC npC 1 0 NOR2 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

-END 

Figure 115. Twelve-Bit Input Shift Register SPICE model source code. 
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Twelve-Bit Shift Register Response 
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Figure 116. Twelve-Bit Input Shift Register SPICE model response. 
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2. Eight-Bit Data Latch 

The SPICE model for the eight-bit data latch implements the structural design of 

Figure 100. A full source code listing is provided in Figure 117. Input for checking the data 

latch is shown in Figure 118. Various command values are presented to the data latch and a 

clock pulse provides the latch command. The eight-bit data latch response in Figure 119 

shows that the various values are locked onto the command bus as required. The periodic 

clearing of all bits is caused by a reset signal that is pulsed at every other latch cycle. 

* latch8.cir ==> Eight-Bit Data Latch Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO  iO  0 PWL(0 
Vil 
Vi2 
Vi3 
Vi4 
Vi5 
Vi6 
Vi7 

il 
±2 
i3 
i4 
i5 
i6 
i7 

0 
0 
0 
0 
0 
0 
0 

Vrst rst 0 
Vlat latch 

PWL(0 
PWL(0 
PWL(0 
PWL(0 
PWL(0 
PWL(0 
PWL(0 
PULSE(5 
0 PULSE 

299. 
399. 
499. 
599. 
699. 
799. 
899. 
999. 
0 2. 

(0 5 

5n 5 301.5n 0 499.5n 0 501.5n 5 15) 
5n 5 401.5n 0 699.5n 0 701.5n 5 15) 
5n 5 501.5n 0 899.5n 0 901.5n 5 15) 
5n 5 601.5n 0 1099.5n 0 1101.5n 5 15) 
5n 5 701.5n 0 1299.5n 0 1301.5n 5 15) 
5n 5 801.5n 0 1499.5n 0 1501.5n 5 15) 
5n 5 901.5n 0 1699.5n 0 1701.5n 5 15) 
5n 5 1001.5n 0 1899.5n 
5n In In 95n lOOn) 
24.5n In In 24n 50n) 

0 1901.5n 5 15) 

* Eight-bit data latch 
XdO 
Xdl 
Xd2 
Xd3 
Xd4 
Xd5 
Xd6 
Xd7 

iO latch 
il latch 
i2 latch 
i3 latch 
i4 latch 
i5 latch 
i6 latch 
i7 latch 

nq2 
nq3 

nR qO nqO 
nR ql nql 
nR q2 
nR q3 
nR q4 nq4 
nR q5 nq5 
nR q6 nq6 
nR q7 nq7 

0 DFLOPGC 
0 DFLOPGC 
0 DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 

0 DFLOPGC 
Xi rst nR 1 0 INV 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 117. Eight-Bit Data Latch SPICE model source code. 
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Eight-Bit Data Latch Input 
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Figure 118. Eight-Bit Data Latch SPICE model input. 
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Eight-Bit Data Latch Output 
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Figure 119. Eight-Bit Data Latch SPICE model response. 
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3. Input Stream Validity Check 

The SPICE model for the input stream validity check implements the structural 

design of Figure 101. A full source code listing is provided in Figure 120. Input for testing 

the validity checker is shown in Figure 121. The command packet "0 0 1 1 1 1 1 1 1 0 1" is 

simulated shifting through the input shift register. The input stream validity check response 

in Figure 122 shows that a latch signal is generated when the command packet formatting 

requirements are met. This locks the command byte onto the command bus and presents a 

bus data valid signal for ten clock cycles. When the bus data valid flag is set, the partial 

clear signal is produced. 
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* invalid.cir ==> Input Stream Validity Check Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 1 0 5 

* Input Signals 
ViO iO 0 PWL(0 0 25n 0 26n 5 325n 5 326n 0 425n 0 426n 5 775n 5 776n 0 

825n 0 826n 5 1 5) 
Vil il 0 PWL(0 0 75n 0 76n 5 375n 5 376n 0 475n 0 476n 5 825n 5 826n 0 

875n 0 876n 5 1 5) 
Vi2 i2 0 PWL(0 0 125n 0 126n 

925n 0 926n 5 1 
5 
5) 

425n 5 426n 0 525n 0 526n 5 860n 5 861n 0 

Vi3 i3 0 PWL(0 0 175n 0 176n 
975n 0 976n 5 1 

5 

5) 

475n 5 476n 0 575n 0 576n 5 860n 5 861n 0 

Vi4 i4 0 PWL(0 0 225n 0 226n 5 525n 5 526n 0 625n 0 626n 5 860n 5 861n 0 
1025n 0 1026n 5 1 5) 

Vi5 i5 0 PWL(0 0 275n 0 276n 5 575n 5 576n 0 675n 0 676n 5 860n 5 861n 0 
1075n 0 1076n 5 1 5) 

Vi6 i6 0 PWL(0 0 325n 0 326n 5 625n 5 626n 0 725n 0 726n 5 860n 5 861n 0 
1125n 0 1126n 5 1 5) 

Vi7 i7 0 PWL(0 0 375n 0 376n 5 675n 5 676n 0 775n 0 776n 5 860n 5 861n 0 
1175n 0 1176n 5 1 5) 

Vi8 i8 0 PWL(0 0 425n 0 426n 5 725n 5 726n 0 825n 0 826n 5 860n 5 861n 0 
1225n 0 1226n 5 1 5) 

Vi9 i9 0 PWL(0 0 475n 0 476n 5 775n 5 776n 0 1275n 0 1276n 5 15) 

VilO ilC 0 PWL(0 0 525n 0 526n 5 825n 5 826n 0 1325n 0 1326n 5 15) 

Vill il] 0 PWL(0 0 575n 0 576n 5 860n 5 861n 0 1375n 0 1376n 5 15) 

Vrst rst . 0 PWL(0 0 1795n 0 1796n 5 1799n 5 1800n 0) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

* Input stream validity check 
XxO il i2 xoO 1 0 XOR2 
Xxl i3 i 4 xol 1 0 XOR2 
Xx2 i5 i 6 xo2 1 0 XOR2 
Xx3 i7 i 8 xo3 1 0 XOR2 
Xx4 i9 xo3 xo4 1 0 XOR2 
Xx5 xoO xol xo5 1 0 XOR2 
Xx6 xo2 xo4 xo6 1 0 XOR2 
Xx7 xo5 xo6 xo7 1 0 XOR2 

XaO iO i 11 aoO 1 0 NAND2 
Xal nilC xo7 aol 1 0 NMFD2 
XnO aoO aol frm 1 0 NOR2 
XiO ilO nilO 1 0 INV 
Xil frm nfrm 1 0 INV 
Xnl nbdv nilO ill nol 1 0 NOR3 
Xn2 nfrm elk latch 1 0 NOR2 

Xn3 rst nol no3 1 0 NOR2 
XdO frm latch no3 bdv nbdv 1 0 DFLOPGC 
Xa2 bdv frm pC 1 0 AND2 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 120. Input Stream Validity Check SPICE model source code. 
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Input Stream Validity Check Output 
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Figure 122. Input Stream Validity Check SPICE model response. 
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C. COMMAND DECODER AND CONTROLLER 

The SPICE model for the Command Decoder and Controller is a combination of the 

models for its subordinate components. A full source code listing is provided in Figure 123. 

The command sequence 01001100-10001100-11001100-01111111 is 

simulated on the command bus with the corresponding bus valid flag. The Command 

Decoder and Controller control signal response is shown in Figure 124 and the register 

value response is shown in Figure 125. 

The control signal response in Figure 124 illustrates the operating state transitions 

and the command signals generated by the Command Decoder and Controller. The initial 

command byte corresponds to the assigned address and causes the controller to shift to state 

1. When the second byte is received, it is decoded as a command to set the pulse width 

value, which shifts the controller to state 3. A pulse width latch signal is issued because the 

pulse width register does not match the command bus value. Once the value is locked into 

the register, the falling pulse width difference flag clears the latch signal. Output is enabled 

when the new pulse width is latched, allowing the Tactor Power Control module to start 

using the new pulse width value. The third byte decodes as a command to set the repetition 

period, which requires no change in the control state. A repetition period latch command is 

issued because the repetition period register does not match the command bus value. Once 

the value is locked into the register, the falling repetition period difference flag clears the 

latch signal. The fourth byte is the "all call" address. The previous set of register 

commands is now complete and the controller shifts to state 0 to process the next command 

set because the command received in control state 3 is an address command. The next clock 

cycle shifts the controller to state 1 because the "all call" is a valid address and the controller 
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is now in state 0. The controller shift to state 0 just before 2 uS is caused by a system reset 

signal, which also disables the output flag and clears the storage registers. 

The register response in Figure 125 illustrates how the stored values change in the 

pulse width and repetition period registers. At 0.5 \iS, the pulse width latch signal caused 

the pulse width register to lock in the commanded value. At 1 (iS, the repetition period latch 

signal caused the repetition period register to lock in the commanded value. Just before 2 

J0.S, a system reset signal clears both storage registers. 
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* CmdDecodeCont.cir ==> Command Decoder & Controller Transient Character. 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO iO 0 PWL(0 0 1450n 0 1451n 

0 PWL(0 0 1450n 0 1451n 
0 PWL(0 
0 PWL(0 

Vil 
Vi2 
Vi3 
Vi4 
Vi5 
Vi6 
Vi7 

il 
i2 
i3 
i4 
i5 
i6 
i7 

1 5) 
1 5) 

0 PWL(0 0 1450n 0 1451n 
0 PWL(0 0 1450n 0 1451n 
0 PWL(0 5 450n 
0 PWL(0 0 450n 0 451n 5 

14n 0 15n 5 400n 

5 1 5) 
5 1 5) 

5 1 5) 
5 1 5) 

1 5) 5 451n 0 950n 0 951n 5 
1450n 5 1451n 0 10) 
5 401n 0 500n 0 501n 5 900n 5 901n 0 lOOOn 

5 1901n 0 10) 
1980n 5) 

VbV bV 0 PWL(0 0 
0 lOOln 5 1400n 5 1401n 0 1500n 0 1501n 5 1900n 
Vrst nRst 0 PWL(0 0 lOn 0 lln 5 1975n 5 1976n 0 1979n 0 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 
VaO adO 0 0 
Val adl 0 0 
Va2 ad2 0 5 
Va3 ad3 0 5 
Va4 ad4 0 0 
Va5 ad5 0 0 
Va6 ad6 0 5 

* Command sequence controller 
XcdO aco2 elk nRst sO nsO 1 0 DFLOPGC 
Xcdl icoO elk nRst si nsl 1 0 DFLOPGC 
XcaO i7 sO acoO 1 0 NAND2 
Xcal nsl sO acol 1 0 NAND2 
Xca2 acoO acol ocoO aco2 1 0 NAND3 
XciO acoO icoO 1 0 INV 
XcoO i7 sO nValidAddr ocoO 1 0 OR3 
Xca3 i7 bV sO si aco3 1 0 AND4 
Xcil i6 ni6 1 0 INV 
Xca4 i7 bV ni6 aco4 1 0 AND3 
Xca5 aco4 ocol oco2 aco5 1 0 NAND3 
Xca6 nRst aco5 aco6 1 0 NAND2 
Xcol i3 i4 i5 ocol 1 0 NOR3 
Xco2 iO il i2 oco2 1 0 NOR3 
Xca7 ni6 pwDiff aco3 aco7 1 0 NAND3 
Xca8 aco3 i6 rpDiff aco8 1 0 NAND3 
Xca9 aco3 pwDiff rpDiff aco9 1 0 NAND3 
XcalO aco7. aco8 aco9 acolO 1 0 NAND3 
Xco3 aco6 acolO oco3 1 0 OR2 
Xco4 oco3 oco5 enOut 1 0 NOR2 
Xco5 aco3 enOut oco5 1 0 NOR2 
Xci2 aco7 pwLat 1 0 INV 
Xci3 aco8 rpLat 1 0 INV 

Figure 123. Command Decoder and Controller SPICE model source code. 
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* Address comparator 
XaxO iO adO xaoO 1 0 XNOR2 
Xaxl il adl xaol 1 0 XNOR2 
Xax2 i2 ad2 xao2 1 0 XNOR2 
Xax3 i3 ad3 xao3 1 0 XNOR2 
Xax4 i4 ad4 xao4 1 0 XNOR2 
Xax5 i5 ad5 xao5 1 0 XNOR2 
Xax6 i6 ad6 xao6 1 0 XNOR2 
XaaO xaoO xaol xao2 aaoO 1 0 NÄND3 
Xaal xao3 xao4 xao5 aaol 1 0 NAND3 
Xaa2 xao6 ni7 aao2 1 0 NAND2 
Xaa3 i6 ni7 aao3 1 0 NAND2 
Xaa4 i3 i4 i5 aao4 1 0 NAND3 
Xaa5 iO il i2 aao5 1 0 NAND3 
XaoO aaoO aaol aao2 oaoO 1 0 MOR3 
Xaol aao3 aao4 aao5 oaol 1 0 NOR3 
Xao2 oaoO oaol nValidAddr 1 0 NOR2 
Xai i7 ni7 1 0 INV 

* Pulse width register 
XpdO iO pwLat nRst pwO npwO 1 0 DFLOPGC 
Xpdl il pwLat nRst pwl npwl 1 0 DFLOPGC 
Xpd2 i2 pwLat nRst pw2 npw2 1 0 DFLOPGC 
Xpd3 i3 pwLat nRst pw3 npw3 1 0 DFLOPGC 
Xpd4 i4 pwLat nRst pw4 npw4 1 0 DFLOPGC 
Xpd5 i5 pwLat nRst pw5 npw5 1 0 DFLOPGC 
XpxO iO pwO xpoO 1 0 XOR2 
Xpxl il pwl xpol 1 0 XOR2 
Xpx2 i2 pw2 xpo2 1 0 XOR2 
Xpx3 i3 pw3 xpo3 1 0 XOR2 
Xpx4 i4 pw4 xpo4 1 0 XOR2 
Xpx5 i5 pw5 xpo5 1 0 XOR2 
XpoO xpoO xpol xpo2 opoO 1 0 ] STOR3 
Xpol xpo3 xpo4 xpo5 opol 1 0 ] STOR3 
XpaO opoO opol pwDiff 1 0 NAND2 

* Repetition period register 
XrdO iO rpLat nRst rpO nrpO 1 0 DFLOPGC 
Xrdl il rpLat nRst rpl nrpl 1 0 DFLOPGC 
Xrd2 i2 rpLat nRst rp2 nrp2 1 0 DFLOPGC 
Xrd3 i3 rpLat nRst rp3 nrp3 1 0 DFLOPGC 
Xrd4 i4 rpLat nRst rp4 nrp4 1 0 DFLOPGC 
Xrd5 i5 rpLat nRst rp5 nrp5 1 0 DFLOPGC 
XrxO iO rpO xroO 1 0 XOR2 
Xrxl il rpl xrol 1 0 XOR2 
Xrx2 i2 rp2 xro2 1 0 XOR2 
Xrx3 i3 rp3 xro3 1 0 XOR2 
Xrx4 i4 rp4 xro4 1 0 XOR2 
Xrx5 i5 rp5 xro5 1 0 XOR2 
XroO xroO xrol xro2 oroO 1 0 NOR3 
Xrol xro3 xro4 xro5 orol 1 0 NOR3 
XraO oroO orol rpDiff 1 0 NAND2 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 123. Command Decoder and Controller SPICE model source code, (continued) 
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Figure 124. Command Decoder and Controller SPICE model Control response. 
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Figure 125. Command Decoder and Controller SPICE model Register response. 
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1. Command Sequence Controller 

The SPICE model for the command sequence controller implements the structural 

design of Figure 102. A full source code listing is provided in Figure 126. The command 

sequence 01001100-10001100-11001100-01111111 is simulated on the 

command bus with the corresponding bus valid flag. The response in Figure 127 illustrates 

the operating state transitions and the command signals generated by the command sequence 

controller. The initial command byte corresponds to the assigned address and causes the 

controller to shift to state 1. When the second byte is received, it is decoded as a command 

to set the pulse width value, which shifts the controller to state 3. A pulse width latch signal 

is now issued since the pulse width register does" not match the command bus value. Once 

the value is locked into the register, the falling pulse width difference flag clears the latch 

signal. Output is enabled when the new pulse width is latched, allowing the Tactor Power 

Control module to start using the new pulse width value. The third byte decodes as a 

command to set the repetition period, which requires no change in the control state. A 

repetition period latch command is issued since the repetition period register does not match 

the command bus value,. Once the value is locked into the register, the falling repetition 

period difference flag clears the latch signal. The fourth byte is the "all call" address. The 

previous set of register commands is now complete and the controller shifts to state 0 to 

process the next command set because an address command was received in control state 3. 

The next clock cycle shifts the controller to state 1 since the "all call" is a valid address and 

the controller is now in state 0. The controller shift to state 0 just before 2 \iS in Figure 127 

is caused by a system reset signal, which also disables the output flag and clears the storage 

registers. 
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* CmdSeqCont.cir ==> Command Sequence Controller Transient Characteristics 

■ * Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO  iO 0 PWL(0 0 1450n 0 1451n 5 15) 
Vil  il 0 PWL(0 0 1450n 0 1451n 5 15) 
Vi2  i2 0 PWL(0 5 1 5) 
Vi3  i3 0 PWL(0 5 1 5) 
Vi4  i4 0 PWL(0 0 1450n 0 1451n 5 15) 
Vi5  i5 0 PWL(0 0 1450n 0 1451n 5 15) 
Vi6  i6 0 PWL(0 5 450n 5 451n 0 950n 0 951n 5 15) 
Vi7  i7 0 PWL(0 0 450n 0 451n 5 1450n 5 1451n 0 10) 
VnVA nVA 0 PWL(0 0 450n 0 451n 5 1450n 5 1451n 0 10) 
VbV bV 0 PWL(0 5 400n 5 401n 0 500n'0 501n 5 900n 5 901n 0 lOOOn 0 

1400n 5 1401n 0 1500n 0 1501n 5 1900n 5 1901n 0 10) 
VpwD pwD 0 PWL(0 5 600n 5 601n 0 951n 0 952n 5 15) 

lOOln 5 

VrpD rpD 0 PWL(0 5 HOOn 5 HOln 0 1451n 0 1452n 5 15) 
Vrst nRst 0 PWL(0 5 1975n 5 1976n 0 1979n 0 1980n 5) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

* Command sequence controller 
XdO ao2 elk nRst qO nqO 1 0 DFLOPGC 
Xdl ioO elk nRst ql nql 1 0 DFLOPGC 
XaO i7 qO aoO 1 0 NAND2 
Xal nql qO aol 1 0 NAND2 
Xa2 aoO aol ooO ao2 1 0 NAND3 
XiO aoO ioO 1 0 INV 
XoO i7 qO nVA ooO 1 0 OR3 
Xa3 i7 bV qO ql ao3 1 0 AND4 
Xil i6 ni6 1 0 INV 
Xa4 i7 bV ni6 ao4 1 0 AND3 
Xa5 ao4 ool oo2 ao5 1 0 NAND3 
Xa6 nRst ao5 ao6 1 0 NAND2 
Xol i3 i4 i5 ool 1 0 NOR3 
Xo2 iO il i2 oo2 1 0 NOR3 
Xa7 ni6 pwD ao3 ao7 1 0 NAND3 
Xa8 ao3 i6 rpD ao8 1 0 NAND3 
Xa9 ao3 pwD rpD ao9 1 0 NAND3 
XalO ao7 ao8 ao9 aolO 1 0 NAND3 
Xo3 ao6 aolO oo3 1 0 OR2 
Xo4 oo3 oo5 enOut 1 0 NOR2 
Xo5 ao3 enOut oo5 1 0 NOR2 
Xi2 ao7 pwLat 1 0 INV 
Xi3 ao8 rpLat 1 0 INV 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 126. Command Sequence Controller SPICE model source code. 
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2. Address Comparator 

The SPICE model for the address comparator implements the structural design of 

Figure 103. A full source code listing is provided in Figure 128. The reference address is 

set to " 1 0 0 1 10 0" and various values are presented on the command bus. The address 

comparator response in Figure 129 illustrates the continuous address verification. The first 

and last valid address indications correspond to the all-call address and the middle two valid 

address indications are due to the assigned tactor address. 
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* AddrComp.cir ==> Address Comparator Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO iO 0 PWL(0 5 299.5n 5 300 5n 0 1299.5n 0 1300.5n 5 1 5> 
Vil il 0 PWL(0 5 299.5n 5 300 5n 0 1399.5n 0 1400.5n 5 15) 
Vi2 i2 0 PWL(0 5 299.5n 5 300 

1 0) 
5n 0 699.5n 0 700.5n 5 1699.5n 5 1700.5n 

Vi3 i3 0 PWL(0 5 299.5n 5 300 5n 0 599.5n 0 600.5n 5 1 5) 
Vi4 i4 0 PWL(0 5 299.5n 5 300 5n 0 1399.5n 0 1400.5n 5 15) 

Vi5 i5 0 PWL(0 5 299.5n 5 3 00 5n 0 1199.5n 0 1200.5n 5 15) 

Vi6 i6 0 PWL(0 5 299.5n 5 300 5n 0 499.5n 0 500.5n 5 1099.5n 5 1100.5n 
1599.5n 0 1600.5n 5 1 5) 

Vi7 i7 0 PWL(0 5 199.5n 5 200 
1 0) 

5n 0 899.5n 0 900.5n 5 999.5n 5 1000.5n 

VaO adO 0 0 
Val adl 0 0 
Va2 ad2 0 5 
Va3 ad3 0 5 
Va4 ad4 0 0 
Va5 ad5 0 0 
Va6 ad6 0 5 

* Address comparator 
XxO iO adO xoO 1 0 XNOR2 
Xxl il adl xol 1 0 XNOR2 
Xx2 i2 ad2 xo2 1 0 XNOR2 
Xx3 i3 ad3 xo3 1 0 XNOR2 
Xx4 i4 ad4 xo4 1 0 XNOR2 
Xx5 i5 ad5 xo5 1 0 XNOR2 
Xx6 i6 ad6 xo6 1 0 XNOR2 
XaO xoO xol xo2 aoO 1 0 NAND3 
Xal xo3 xo4 xo5 aol 1 0 NAND3 
Xa2 xo6 ni7 ao2 1 0 NAND2 
Xa3 i6 ni7 ao3 1 0 NAND2 
Xa4 i3 i4 i5 ao4 1 0 NAND3 
Xa5 iO il 12 ao5 1 0 NAND3 
XoO aoO aol ao2 ooO 1 0 NOR3 
Xol ao3 ao4 ao5 ool 1 0 NOR3 
Xo2 ooO ool nValidAddr 1 0 NOR2 
Xi i7 ni7 1 0 INV 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 128. Address Comparator SPICE model source code. 
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3. Pulse Width Register 

The SPICE model for the pulse width register implements the structural design of 

Figure 104. A full source code listing is provided in Figure 130. Various values are 

presented to the register and a clock pulse provides the latch command. The pulse width 

register response in Figure 131 shows the various values are stored in the register as 

required. The periodic clearing of all bits is caused by a reset signal that is pulsed at every 

other latch cycle. 
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* PWregister.cir ==> Pulse Width Register Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO  iO  0 PWL(0 
Vil 
Vi2 
Vi3 
Vi4 
Vi5 
Vi6 
Vi7 

il 
i2 
i3 
i4 
i5 
i6 
i7 

0 PWL(0 
0 PWL(0 
0 PWL(0 
0 PWL(0 
0 PWL(0 
0 PWL(0 
0 PWL(0 

Vrst rst 0 PULSE(5 
Vclk latch 0 PULSE 

299.5n 5 301.5n 0 499.5n 0 501.5n 5 15) 
399.5n 5 401.5n 0 699.5n 0 701.5n 5 15) 
499.5n 5 501.5n 0 899.5n 0 901.5n 5 15) 
599.5n 5 601.5n 0 1099.5n 0 1101.5n 5 15) 
699.5n 5 701.5n 0 1299.5n 0 1301.5n 5 15) 
799.5n 5 801.5n 0 l'499.5n 0 1501.5n 5 15) 
899.5n 5 9'01.5n 0 1699.5n 0 1701.5n 5 15) 
999.5n 5 1001.5n 0 1899.5n 0 1901.5n 5 15) 
0 2.5n In In 95n lOOn) 
(0 5 24.5n In In 24n 50n) 

* Pulse width register 
XdO iO latch nR pwO npwO 1 0 
Xdl il latch nR pwl npwl 1 0 
Xd2 i2 latch nR pw2 npw2 1 0 
Xd3 i3 latch nR pw3 npw3 1 0 
Xd4 i4 latch nR pw4 npw4 1 0 
Xd5 i5 latch nR pw5 npw5 1 0 
XxO iO pwO xoO 1 0 XOR2 
Xxl il pwl xol 1 0 
Xx2 i2 pw2 xo2 
Xx3 i3 pw3 xo3 

DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 

Xx4 i4 pw4 xo4 
Xx5 i5 pw5 xo5 

XOR2 
0 XOR2 
0 XOR2 
0 XOR2 
0 XOR2 

XoO xoO xol xo2 ooO 1 0 NOR3 
Xol xo3 xo4 xo5 ool 1 0 NOR3 
XaO ooO ool pwDiff 1 0 NAND2 
Xi rst nR 1 0 INV 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 130. Pulse Width Register SPICE model source code. 
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Figure 131. Pulse Width Register SPICE model response. 
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4. Repetition Period Register 

The SPICE model for the repetition period register implements the structural design 

of Figure 105. A full source code listing is provided in Figure 132. Various values are 

presented to the register and a clock pulse provides the latch command. The repetition 

period register response in Figure 133 shows that the various values are stored in the register 

as required. The periodic clearing of all bits is caused by a reset signal that is pulsed at 

every other latch cycle. 
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* RPregister.cir ==> Repetition Period Register Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
ViO  iO  0 PWL(0 299 

0 PWL(0 5 399 
0 PWL(0 5 499 
0 PWL(0 5 599 
0 PWL(0 5 699 
0 PWL(0 5 799 
0 PWL(0 5 899 
0 PWL(0 5 999 

Vrst rst 0 PULSE(5 0 2 
Vclk latch 0 PULSE(0 5 

Vil 
Vi2 
Vi3 
Vi4 
Vi5 
Vi6 
Vi7 

il 
i2 
i3 
i4 
i5 
i6 
i7 

,5n 5 301.5n 0 499.5n 0 501.5n 5 15) 
,5n 5 401.5n 0 699.5n 0 701.5n 5 15) 
.5n 5 501.5n 0 899.5n 0 901.5n 5 15) 
,5n 5 601.5n 0 1099.5n 0 1101.5n 5 15) 
,5n 5 701.5n 0 1299.5n 0 1301.5n 5 15) 
,5n 5 801.5n 0 1499.5n 0 1501.5n 5 15) 
,5n 5 901.5n 0 1699.5n 0 1701.5n 5 15) 
,5n 5 1001.5n 0 1899.5n 0 1901.5n 5 15) 
,5n In In 95n lOOn) 
24.5n In In 24n 50n) 

* Repetition period register 
XdO iO latch nR rpO nrpO 1 0 
Xdl il latch nR rpl nrpl 1 0 
Xd2 i2 latch nR rp2 nrp2 
Xd3 i3 latch nR rp3 nrp3 
Xd4 i4 latch nR rp4 nrp4 

i5 latch nR rp5 nrp5 Xd5 

DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 
DFLOPGC 

0 XOR2 
0 XOR2 
0 XOR2 
0 XOR2 
0 XOR2 
0 XOR2 

XxO iO rpO xoO 
Xxl il rpl xol 
Xx2 i2 rp2 xo2 
Xx3 i3 rp3 xo3 
Xx4 i4 rp4 xo4 
Xx5 i5 .rp5 xo5 
XoO xoO xol xo2 ooO 1 0 NOR3 
Xol xo3 xo4 xo5 ool 1 0 NOR3 
XaO ooO ool rpDiff 1 0 NAND2 
Xi rst nR 1 0 INV 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 132. Repetition Period Register SPICE model source code. 
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Repetition Period Register Response 
latch 

rpPiff 

rpO 

rpl 

£.0E 
<u 

^  5 
§5 

rp2 

rp3 

rp4 

rp5 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
time [uS] 

Figure 133. Repetition Period Register SPICE model response. 
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D. TACTOR POWER CONTROLLER 

The SPICE model for the Tactor Power Controller is a combination of the models 

for its subordinate components. A full source code listing is provided in Figure 134. The 

input signals simulate receiving a register command setting the pulse width to 2 at 0.5 [iS, a 

register command setting the repetition period to 1 at 1 \iS, and finally a system reset just 

before 2 U.S. The Tactor Power Controller response is shown in Figure 135 with an 

emphasis on the output signals and the pulse width and repetition period down counter 

operations. For the first 0.5 p,S, the counters are continuously cleared since the output is 

disabled. From 0.5 to 1 |iS, the counters are continuously loading the values in then- 

respective storage registers. This condition is driven by the 0 value stored in the repetition 

period register and effectively causes the tactor to be continuously activated since the pulse 

width is now non-zero. At 1 |iS, when the output is momentarily disabled, the pulse width 

counter is cleared and the output oscillation signals stop. When the new repetition period is 

set, the output is again enabled. The pulse width and repetition register values are 

immediately latched into the down counters and, since pulse width is non-zero, tactor 

activation begins. The down counters count down together and tactor activation stops when 

the pulse width count reaches zero. The pulse width down counter stops at zero while the 

repetition period down counter continues counting. When the repetition period count 

reaches one, the wave shape is complete and the counters are reloaded on the next clock 

cycle. This process continues, creating a 50% activation cycle for the simulated commands. 

Just before 2 uS, a system reset signal is simulated and tactor activation is immediately 

halted. 

194 



* TactorPwrCont.cir ==> Tactor Power Controller Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subekt.cir 

* Power Supplies 
VDS L 0 5 

* Input S ignals 
VenOut enOut 0 PWL(0 0 505n 0 506n 5 1005n 5 1006n 0 1009n 0 lOlOn 5 

1980n 5 1981n 0 10) 
Vclk elk 0 PULSE(0 5 24.5n In In 49n lOOn) 
Vosc osc 0 PULSE(0 5 24.5n In In 24n 50n) 
Vpw5 pw5 0 PWL(0 0 10) 
Vpw4 pw4 0 PWL{0 0 10) 
Vpw3 pw3 0 PWL(0 0 1 0) 
Vpw2 pw2 0 PWL(0 0 10) 
Vpwl pwl 0 PWL(0 0 500n 0 501n 5 1980n 5 1981n 0 10) 
VpwO pwO 0 PWL(0 0 10) 
Vrp5 rp5 0 PWL(0 0 10) 
Vrp4 rp4 0 PWL(0 0 10) 
Vrp3 rp3 0 PWL(0 0 10) 
Vrp2 rp2 0 PWL(0 0 10) 
Vrpl rpl 0 PWL(0 0 10) 
VrpO rpO 0 PWL(0 0 lOOOn 0 lOOln 5 1980n 5 1981n 0 10) 

* Power control logic 
XiO s =nOut cntClr 1 0 INV 

* Pulse Width Down Counter 
XpaO opoO opol npwZ 1 0 NAND2 
XpoO pq3 pq4 pq5 opoO 1 0 NORC i 
Xpol pqO pql pq2 opol 1 0 NOR! 
XpmO npqO pwO nrpGTl mpoO 1 0 MUX 
XpdO mpoO elk opo5 pqO npqO 1 0 DFLOPGC 
Xpxl npqO npql xpol 1 0 XNOR2 
Xpml xpol pwl nrpGTl mpol 1 0 MUX 
Xpdl mpol elk opo5 pql npql 1 0 DFLOPGC 
Xpal npqO npql apol 1 0 NAND2 
Xpx2 apol pq2 xpo2 1 0 XNOR2 
Xpm2 xpo2 pw2 nrpGTl mpo2 1 0 MUX 
Xpd2 mpo2 elk opo5 pq2 npq2 1 0 DFLOPGC 
Xpo2 apol pq2 opo2 1 0 NOR2 
Xpx3 opo2 npq3 xpo3 1 0 XNOR2 
Xpm3 xpo3 pw3 nrpGTl mpo3 1 0 MUX 
Xpd3 mpo3 elk opo5 pq3 npq3 1 0 DFLOPGC 
Xpa2 opo2 npq3 apo2 1 0 NAND2 
Xpx4 apo2 pq4 xpo4 1 0 XNOR2 
Xpm4 xpo4 pw4 nrpGTl mpo4 1 0 MUX 
Xpd4 mpo4 elk opo5 pq4 npq4 1 0 DFLOPGC 
Xpo3 apo2 pq4 opo3 1 0 NOR2 
Xpx5 opo3 npq5 xpo5 1 0 XNOR2 
Xpm5 xpo5 pw5 nrpGTl mpo5 1 0 MUX 
Xpd5 mpo5 elk opo5 pq5 npq5 1 0 DFLOPGC 
Xpo4 nrpGTl npwZ opo4 1 0 NORS 
Xpo5 opo4 cntClr opo5 1 0 NOR2 

Figure 134. Tactor Power Controller SPICE model source code. 
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DFLOPGC 

MUX 
0 DFLOPGC 

MUX 
0 DFLOPGC 

* Repetition Period Down Counter 
XraO oroO orol oro2 nrpGTl 1 0 AMD3 
XroO rql rq2 oroO 1 0 N0R2 
Xrol rg3 rq4 orol 1 0 NOR2 
Xro2 rq5 rq6 rq7 oro2 1 0 NOR3 
XrmO nrqO 0 nrpGTl mroO 1 0 MUX 
XrdO mroO elk oro7 rqO nrqO 1 0 DFLOPGC 
Xrxl nrqO nrql xrol 1 0 XNOR2 
Xrml xrol 0 nrpGTl mrol 1 0 MUX 
Xrdl mrol elk oro7 rql nrql 1 0 
Xra2 nrqO nrql aro2 1 0 NAND2 
Xrx2 aro2 rq2 xro2 1 0 XNOR2 
Xrm2 xro2 rpO nrpGTl mro2 1 0 
Xrd2 mro2 elk oro7 rq2 nrq2 1 
Xro3 aro2 rq2 oro3 1 0 NOR2 
Xrx3 oro3 nrq3 xro3 1 0 XNOR2 
Xrm3 xro3 rpl nrpGTl mro3 1 0 
Xrd3 mro3 elk oro7 rq3 nrq3 1 
Xra3 oro3 nrq3 aro3 1 0 NAND2 
Xrx4 aro3 rq4 xro4 1 0 XNOR2 
Xrm4 xro4 rp2 nrpGTl mro4 1 0 MUX 
Xrd4 mro4 elk oro7 rq4 nrq4 1 0 DFLOPGC 
Xro4 aro3 rq4 oro4 1 0 NOR2 
Xrx5 oro4 nrq5 xro5 1 0 XNOR2 
Xrm5 xro5 rp3 nrpGTl mro5 1 0 MUX 
Xrd5 mro5 elk oro7 rq5 nrq5 1 0 DFLOPGC 
Xra4 oro4 nrq5 aro4 1 0 NAND2 
Xrx6 aro4 rq6 xro6 1 0 XNOR2 
Xrm6 xro6 rp4 nrpGTl mro6 1 0 MUX 
Xrd6 mro6 elk oro7 rq6 nrq6 1 0 DFLOPGC 
Xro5 aro4 rq6 oro5 1 0 NOR2 
Xrx7 oro5 nrq7 xro7 1 0 XNOR2 
Xrm7 xro7 rp5 nrpGTl mro7 1 0 MUX 
Xrd7 mro7 elk oro7 rq7 nrq7 1 0 DFLOPGC 
Xral nrpGTl nrqO arol 1 0 NAND2 
Xro6 nrpGTl arol oro6 1 0 NOR2 
Xro7 oro6 cntClr oro7 1 0 NOR2 

* Power oscillator 
XoaO osc npwZ aooO 1 0 NAND2 
Xoal nose npwZ aool 1 0 NAND2 
XoiO osc nose 1 0 INV 
Xoil aooO pla 1 0 INVx 
Xoi2 aooO plb 1 0 INVx 
Xoi3 aool p2a 1 0 INVx 
Xoi4 aool p2b 1 0 INVx 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 134. Tactor Power Controller SPICE model source code, (continued) 
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Tactor Power Controller Response 
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Figure 135. Tactor Power Controller SPICE model response. 
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1. Power Control Logic 

The SPICE model for the power control logic structural design of Figure 106 was 

not individually tested since it is comprised of a single logic element. The power control 

logic component was tested as an integral portion of the Tactor Power Control module 

2. Power Oscillator 

The SPICE model for the power oscillator implements the structural design of 

Figure 107. A full source code listing is provided in Figure 136. An oscillation frequency is 

supplied to the power oscillator and the enable power signal is used to control transmission 

of the oscillation signal. The power oscillator response in Figure 137 shows that oscillation 

begins as soon as the enable power signal is applied and oscillation ends immediately when 

the enable power signal is removed. 

* PwrOscill.cir ==>  Power Oscillator Transient Characteristxcs 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VenP enP 0 PWL(0 5 499n 5 500n 0 699n 0 700n 5 1499n 5 1500n 0 1699n 0 

1700n 5 15) 
Vosc osc 0 PULSE(0 5 24.5n In In 24n 50n) 

* Power oscillator 
XaO osc enP aoO 1 0 NAND2 
Xal nose enP aol 1 0 NAND2 
XiO osc nose 1 0 INV 
Xil aoO pla 1 0 INVx 
Xi2 aoO plb 1 0 INVx 
Xi3 aol p2a 1 0 INVx 
Xi4 aol p2b 1 0 INVx 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 136. Power Oscillator SPICE model source code. 
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Figure 137. Power Oscillator SPICE model response. 
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3. Pulse Width Down Counter 

The SPICE model for the pulse width down counter implements the structural 

design of Figure 108. A full source code listing is provided in Figure 138. Various values 

are loaded into the down counter to test the transitions between different stages. The pulse 

width down counter response in Figure 139 shows the values are loaded into the counter on 

the positive clock transition when the load signal is applied. The down counter decreases 

the stored value by one at each clock cycle. As seen just after the 1.2 ^iS point, when the 

counter reaches zero, it stops counting. The count clear signal at 1.7 \iS immediately clears 

all counter stages. The control signal produced by this down counter is the "not pulse width 

equals zero." Figure 139 shows this flag is immediately applied whenever the count is non- 

zero and immediately cleared when the counter reaches zero. 
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* PWDownCount.cir ==> Pulse Width Down Counter Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 1 0 5 

* Input Signals 
ViO  iO 0 PWL(0 5 15) 
Vil  il 0 PWL(0 0 1349n 0 1350n 5 15) 
Vi2  i2 0 PWL(0 0 950n 0 951n 5 1250n 5 1251n 0 1349n 0 1350n 5 15) 
Vi3  i3 0 PWL(0 0 650n 0 651n 5 950n 5 951n 0 1349n 0 1350n 5 15) 
Vi4  i4 0 PWL(0 0 350n 0 351n 5 650n 5 651n 0 1349n 0 1350n 5 15) 
Vi5  i5 0 PWL(0 5 350n 5 351n 0 1349n 0 1350n 5 15) 
Vlod lod 0 PWL(0 0 49n 0 50n 5 99n 5 lOOn 0 349n 0 350n 5 399n 5 400n 0 

649n 0 650n 5 699n 5 700n 0 949n 0 950n 5 999n 5 lOOOn 0 
1349n 0 1350n 5 1399n 5 1400n 0 10) 

Vclr clr 0 PWL(0 5 5n 5 6n 0 1709n 0 1710n 5 1719n 5 1720n 0 10) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

* Pulse Width Down Counter 
XaO ooO ool npwZ 1 0 NAND2 
XoO q3 q4 g5 ooO 1 0 NOR3 
Xol gO ql q2 ool 1 0 NOR3 
XmO nqO iO lod moO 1 0 MUX 
XdO moO elk oo5 qO ngO 1 0 DFLOPGC 
Xxl nqO nql xol 1 0 XNOR2 
Xml xol il lod mol 1 0 MUX 
Xdl mol elk oo5 ql ngl 1 0 DFLOPGC 
Xal ngO ngl aol 1 0 NAND2 
Xx2 aol q2 xo2 1 0 XNOR2 
Xm2 xo2 i2 lod mo2 1 0 MUX 
Xd2 mo2 elk oo5 q2 nq2 1 0 DFLOPGC 
Xo2 aol q2 oo2 1 0 NOR2 
Xx3 oo2 nq3 xo3 1 0 XNOR2 
Xm3 xo3 i3 lod mo3 1 0 MUX 
Xd3 mo3 elk oo5 q3 nq3 1 0 DFLOPGC 
Xa2 oo2 nq3 ao2 1 0 NAND2 
Xx4 ao2 q4 xo4 1 0 XNOR2 
Xm4 xo4 i4 lod mo4 1 0 MUX 
Xd4 mo4 elk oo5 q4 nq4 1 0 DFLOPGC 
Xo3 ao2 q4 oo3 1 0 NOR2 
Xx5 oo3 nq5 xo5 1 0 XNOR2 
Xm5 xo5 i5 lod mo5 1 0 MUX 
Xd5 mo5 elk oo5 q5 ng5 1 0 DFLOPGC 
Xo4 lod npwZ oo4 1 0 NOR2 
Xo5 oo4 clr oo5 1 0 NOR2 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 138. Pulse Width Down Counter SPICE model source code. 
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Figure 139. Pulse Width Down Counter SPICE model response. 
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4. Repetition Period Down Counter 

The SPICE model for the repetition period down counter implements the structural 

design of Figure 109. A full source code listing is provided in Figure 140. Various values 

are loaded into the down counter to test the transitions between different stages. The 

repetition period down counter response in Figure 141 shows the values are loaded into the 

counter on the positive clock transition when the load signal is applied. The down counter 

decreases the stored value by one at each clock cycle. As seen just after the 1.6 \iS point, 

when the counter reaches zero, it stops counting. The count clear signal at 1.2 \xS 

immediately clears all counter stages. The control signal produced by this down counter is 

the "not repetition period greater than one." Figure 141 shows this flag is immediately 

applied whenever the count is one or zero and immediately cleared when the counter value 

is greater than one. 

* RPDownCount.cir = ==> Repetition Period Down Counter Transient 
Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
YDS 10 5 

* Input Signals 
ViO  iO  0 PWL(0 5 1 5) 
Vil  il  0 PWL(0 0 1 0) 
Vi2  i2  0 PWL(0 0 950n 0 951n 5 1250n 5 1251n 0 10) 
Vi3  i3  0 PWL(0 0 650n 0 651n 5 950n 5 951n 0 10) 
Vi4  i4  0 PWL(0 0 350n 0 351n 5 650n 5 651n 0 10) 
Vi5  i5  0 PWL(0 5 350n 5 351n 0 1 0) 
Vlod lod 0 PWL(0 0 49n 0 50n 5 9S n 5 lOOn 0 349n 0 350n 5 399n 5 400n 0 

649n 0 650n 5 699n 5 700n 0 949n 0 950n 5 999n 5 lOOOn 0 
1349n 0 1350n 5 1399n 5 1400n 0 1 0) 

Vclr clr 0 PWL(0 5 5n 5 6n 0 117S n 0 1180n 5 1189n 5 1190n 0 10) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

Figure 140. Repetition Period Down Counter SPICE model source code. 
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* Repet ition Period Down Counter 
XaO ooO ool oo2 nrpGTl 1 0 AND3 
XoO ql g2 ooO 1 0 NOR2 
Xol q3 g4 ool 1 0 N0R2 
Xo2 q5 36 q7 oo2 1 0 NOR3 
XmO nqO 0 lod moO 1 0 MUX 
XdO moO elk oo7 qO nqO 1 0 DFLOPGC 
Xxl nqO nql xol 1 0 XNOR2 
Xml xol 0 lod mol 1 0 MUX 
Xdl mol elk oo7 ql nql 1 0 DFLOPGC 
Xa2 nqO nql ao2 1 0 NAND2 
Xx2 ao2 q2 xo2 1 0 XNOR2 
Xm2 xo2 iO lod mo2 1 0 MUX 
Xd2 mo2 elk oo7 q2 nq2 1 0 DFLOPGC 
Xo3 ao2 q2 oo3 1 0 NOR2 
Xx3 oo3 nq3 xo3 1 0 XNOR2 
Xm3 xo3 il lod mo3 1 0 MUX 
Xd3 mo3 elk oo7 q3 nq3 1 0 DFLOPGC 
Xa3 oo3 nq3 ao3 1 0 NAND2 
Xx4 ao3 q4 xo4 1 0 XN0R2 
Xm4 xo4 i2 lod mo4 1 0 MUX 
Xd4 mo4 elk oo7 q4 nq4 1 0 DFLOPGC 
Xo4 ao3 q4 oo4 1 0 N0R2 
Xx5 oo4 nq5 xo5 1 0 XNOR2 
Xm5 xo5 i3 lod mo5 1 0 MUX 
Xd5 mo5 elk oo7 q5 nq5 1 0 DFLOPGC 
Xa4 oo4 nq5 ao4 1 0 NAND2 
Xx6 ao4 q6 xo6 1 0 XNOR2 
Xm6 xo6 i4 lod mo6 1 0 MUX 
Xd6 mo6 elk oo7 q6 nq6 1 0 DFLOPGC 
Xo5 ao4 q6 oo5 1 0 NOR2 
Xx7 oo5 nq7 xo7 1 0 XNOR2 
Xm7 xo7 i5 lod mo7 1 0 MUX 
Xd7 mo7 elk oo7 q7 nq7 1 0 DFLOPGC 
Xal nrpGTl nqO aol 1 0 NAND2 
Xo6 lod aol 006 1 0 NOR2 
Xo7 006 clr oo7 1 0 NOR2 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 

Figure 140. Repetition Period Down Counter SPICE model source code, (continued) 

204 



Repetition Period Down Counter Response 
c k 

o 1 L'V.'.'.V.V.V.V.IL. : 

cntLoad 

n              i              1 

: 

cntClear 
3 

A                            i                      - 

1                                          1                                     ni                                         t 

: 

nrpGTl 
5—1         '              ' 

A                            ,         .  
: 

07 
5;     1 ' 1     ' 

n               i             1       ■ 

: 

a6 
5;                    i             r— ' 

> 
" n             ii 

: 

S1    a5 

£ 5-         '     n1 
o > 

n               i              i 

: 

04 
5;           '       n1 

. 

03 
5f      '   n 
ni              i             i 

: 

02 5   n '    r^ 
n               II 

. 

al 5:   -ni   n i— 
n             i           -t- 

aO 

n'             -+-           -i-    —    - 

T-- 
L, 1  

: 

0           0.2         0.4         0.6         0.8           1           1.2         1.4          1.6          1.8           2 
time [uS] 

Figure 141. Repetition Period Down Counter SPICE model response. 
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5. Clock Divider 

The SPICE model for the clock divider implements the structural design of Figure 

110. A full source code listing is provided in Figure 142. The system clock drives a 

counter, causing the system clock to be divided by two at each counter stage. Clock divider 

testing was limited by the memory of the simulation computers. In order to test all fourteen 

stages of the clock divider, three different tests were required. Seven stages were tested at a 

time and a two-stage overlap was used to ensure that all broken connections were remade. 

The clock divider response in Figure 143 shows the results of the final component test. As 

required, each stage reduces the reference frequency by a factor of two. 

206 



* ClockDiv.cir ==> Clock Divider Transient Characteristics 

* Logic Gate model definitions 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
Vnrst nRst 0 PWL(0 0 12n 0 13n 5 1849n 5 1850n 0 1899n 0 1900n 5 15) 
Vclk elk 0 PULSE(0 5 24.5n In In 24n 50n) 

1 0 

1 0 

* Clock Divider 
XdO nqO elk nRst qO nqO 
Xxl qO ql xol 1 0 XOR2 
Xdl xol elk nRst ql nql 
XaO qO ql aoO 1 0 NAND2 
Xx2 aoO nq2 xo2 1 0 XOR2 
Xd2 xo2 elk nRst q2 nq2 1 
XoO aoO nq2 ooO 1 0 NOR2 
Xx3 ooO q3 xo3 1 0 XOR2 
Xd3 xo3 elk nRst q3 nq3 1 
Xal ooO q3 aol 1 0 NAND2 
Xx4 aol nq4 xo4 1 0 XOR2 
Xd4 xo4 elk nRst q4 nq4 1 
Xol aol nq4 ool 1 0 NOR2 
Xx5 ool q5 xo5 1 0 XOR2 
Xd5 xo5 elk nRst q5 nq5 1 
Xa2 ool q5 ao2 1 0 NAND2 
Xx6 ao2 nq6 xo6 1 0 XOR2 
Xd6 xo6 elk nRst q6 nq6 1 
Xo2 ao2 nq6 oo2 1 0 NOR2 
Xx7 oo2 q7 xo7 1 0 XOR2 
Xd7 xo7 elk nRst q7 nq7 1 
Xa3 oo2 q5 ao3 1 0 NAND2 
Xx8 ao3 nq8 xo8 1 0 XOR2 
Xd8 xo8 elk nRst q8 nq8 1 
Xo3 ao3 nq6 oo3 1 0 NOR2 
Xx9 oo3 q9 xo9 1 0 XOR2 
Xd9 xo9 elk nRst q9 nq9 1 
Xa4 oo3 q5 ao4 1 0.NAND2 
XxlO ao4 nqlO xolO 1 0 XOR2 
XdlO xolO elk nRst qlO nqlO 
Xo4 ao4 nq6 oo4 1 0 NOR2 
Xxll oo4 qll xoll 1 0 XOR2 
Xdll xoll elk nRst qll nqll 
Xa5 oo4 q5 ao5 1 0 NAND2 
Xxl2 ao5 nql2 xol2 1 0 XOR2 
Xdl2 xol2 elk nRst ql2 nql2 
Xo5 ao5 nq6 oo5 1 0 NOR2 
Xxl3 oo5 ql3 xol3 1 0 XOR2 
Xdl3 xol3 elk nRst ql3 nql3 

* Simulation Parameters 
.TRAN .In 2000n 0 In 

.END 
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1 0 DFLOPGC 

1 0 DFLOPGC 

1 0 DFLOPGC 

1 0 DFLOPGC 

Figure 142. Clock Divider SPICE model source code. 
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Figure 143. Clock Divider SPICE model response. 
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APPENDIX D. TACTILE INTERFACE ANIMATION PROGRAM 

The goal of animating TIC operations was to accurately and clearly portray the 

functional relations between the wave controlling components.     An animation was 

developed that illustrates the changes that occur in the TIC registers and counters in 

response to a series of command bytes. 

A. ANIMATION DESIGN 

1. TIC Visual Representation 

The significant TIC changes caused by received commands include the controller 

state, both wave shape registers, and both down counters. It was essential to depict tactor 

activation as a visual vibration of the tactor because this system uses vibration as the 

physical stimulus. Figure 144 shows the graphical representation of two intelligent tactors 

in a tactile array. The dark gray rectangles represent the tactors. Each is labeled with its 

address value. Two labeled columns are provided for each tactor to depict the parameters 

associated with pulse width and repetition period. The number at the bottom of each 

column is the stored register value for the pulse width or repetition period. The column acts 

as a vertical gage representing the value in the down counter associated with each register. 

The horizontal bar across the bottom indicates the simulation time and proceeds steadily 

from left to right. The rectangular bubbles above the time line are commands that will be 

issued when the time reaches their position. 
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Figure 144. Tactile Interface Animation Elements. 

2. Animation Color Scheme 

A color scheme was conceived to convey additional information regarding TIC 

conditions. The tactor rectangles change in color to represent the state of the command 

sequence controller. The color used for to fill the pulse width gage is green, exhibiting a 

"go" condition for tactor activation any time the count is greater than zero. 

Figure 145 shows the animation in progress. When a valid address is received the 

TIC shifts to state "B" and the tactor color changes to yellow. When a register command is 

received by a tactor in state "B," the register is set to the commanded value, the TIC shifts to 

state "C," and the tactor color changes to red. When any address is received by a tactor in 

state "C," the TIC shifts to state "A" and the tactor color changes back to gray. The 

repetition period down counter value is represented by a blue column in the area below the 

"RP" label. During operation, the pulse width gage falls four times as fast as the repetition 
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period gage. When the pulse width column is not zero, the attached tactor vibrates. When 

the pulse width column reaches zero, vibration stops. When the repetition period is less than 

two, both down counters load the stored register value. Consequently, when a zero 

repetition period is assigned, both columns reload on every clock pulse and neither column 

decreases in value. When the repetition period register is greater than zero, both counters 

decrease until they are reloaded at the repetition period down counter value of one. 

Figure 145. Tactile Interface Animation in Progress. 

B. ANIMATION PROGRAMMING 

Initially, C++ was used to develop the TIC animation. This choice was a mistake 

due to the complexity of C++ programming with respect to event timing and graphics 

display. Programming efforts were shifted to making a JAVA applet that would run in a 

web browser because this application is very limited in scope. With a score of 

demonstration applets and extensive documentation, the JAVA implementation was much 
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easier that the C++ effort. The program was divided into three logical objects: the 

intelligent tactors, the command bytes, and the demonstration events. Each of these 

elements was implemented as an object class and they are discussed in the following 

subsections. 

1. Intelligent Tactor 

The "Tactor" class maintains all required parameters for intelligent tactor simulation. 

This object includes methods for initialization, command reception, and graphic display. 

Figure 146 contains the complete JAVA source code that implements the tactor class. 

/*   
* Tactor 1.1 ==> This class creates and manages Intelligent Tactors. 
* 
* Copyright (c) 1999 Jeff Link, All Rights Reserved. 
* Permission to use, copy, modify, and distribute this software and its 
* documentation for NON-COMMERCIAL purposes and without fee is hereby 
* granted. 
* 
* The author makes on claims regarding the suitability of this software 
* and shall not be liable for any damages suffered as a result of using, 
* modifying, or distributing this software or its derivatives. 
*  */ 

import Java.awt.Graphics; 
import java.awt.Color; 
import j ava.awt.Font; 

public class Tactor { 
private int cX, cY, direction; 
private int address, state, pwReg, rpReg; 
private int pwCount, rpCount, active; 
private Color pwFill,rpFill,border; 
private Color[] clrState = new Color[3]; 
private Font labelFont = new Font("Serif", Font.BOLD, 30); 
private String strAddr,strPWReg,strRPReg; 

Figure 146. Intelligent Tactor object JAVA source code. 
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/* * 

* Constructs a Tactor. 
* gparam in_centerx The x-coord of the center 
* @param in_centery The y-coord of the center 
* @param in_direction The direction 0 = Left, 1 = Right 
* @param in_addree Assigned address: 1-12 6 
*/ 

public Tactor(int in_centerx, int in_centery, int in_direction, 
int in_address) { 

clrState[0] = Color.gray; 
. clrState[l] = Color.yellow; 
clrState[2] = Color.red; 
border=Color.black; 
pwFill=Color.green; 
rpFill=Color.blue; 
cX=in_centerx; 
cY=ih_centery; 
direction=in_direction; 
address=in_address; 
strAddr=String.valueOf(address); 
initialize(); 

} 

/** 
* Initializes TIC values. 
* Sparam none 
*/ 

public void initialize() { 
state = 0; 
pwCount=pwReg=0; 
rpCount=rpReg=0; 
strPWReg=String.valueOf(pwReg); 
strRPReg=String.valueOf(rpReg); 

} 

Figure 146. Intelligent Tactor object JAVA source code, (continued) 
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/** 

* Sends a command to the TIC. 
* @param cmd 
*/ 

public void issueCommand(int cmd) { 
switch (state) { 
case 0: 

if (cmd==address || cmd==127) 
state=l; 

break; 
case 1: 

if (cmd>127) 
state=2; 

if (cmd>127 && cmd<192) { 
pwReg=pwCount=cmd-128; 
strPWReg=String.valueOf(pwReg); 
rpCount=4*rpReg; 

} 
if (cmd>191 && cmd<256) { 

rpReg=cmd-192; 
rpCount=4*rpReg; 
strRPReg=String.valueOf(rpReg); 
pwCount=pwReg; 

} 
break; 

case 2: 
if   (cmd>=0  ScSc cmd<128) 

state=0; 
if   (cmd==address   ||   cmd==127) 

state=l; 
if (cmd>127 && cmd<192) { 
pwReg=pwCount=cmd-12 8; 
strPWReg=String.valueOf(pwReg); 
rpCount=4*rpReg; 

} 
if (cmd>191 && cmd<256) { 

rpReg=cmd-192; 
rpCount=4*rpReg; 
strRPReg=String.valueOf(rpReg); 
pwCount=pwReg; 

} 
break; 

} 
} 

Figure 146. Intelligent Tactor object JAVA source code, (continued) 
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* Updates the TIC parameters. 
* Sparam 
*/ 

public void updateTactor(int ticks) { 
if (pwCount>0) 

--pwCount; 
if (rpCount>l) 

--rpCount; 
else { 
pwCount=pwReg; 
rpCount=4 *rpReg; 

} 
if (pwCount>0) 
active=(ticks%2==0?l:-l); 

else 
active=0; 

} 

/** 

* Draws the tactor on a graphics object. 
* @param g      The graphics object which the tactor will be drawn upon. 
*/ 

public void drawTactor(Graphics g) { 
int tX=cX+(direction>0?15:-150)-active; 
int tY=cY-54+active; 
int dX=138+2*active; 
int dY=99-2*active; 
g.setColor(clrState[state]); 
g.fillRoundRect(tX,tY,dX+l,dY+l,30,30); 
g.setColor(Color.black); 
g.drawRoundRect(tX,tY,dX,dY,30,30); 
g.setFont(labelFont); 
g.drawstring("PW",cX+(direction>0?-132:30),cY-102); 
g.drawstring("RP",cX+(direction>0?-71:106),cY-102); 
g.drawstring(strPWReg,cX+(direction>0?-132:30)+charOffset(pwReg),cY+132); 
g.drawstring(strRPReg,cX+(direction>0?-75:102)+charOffset(rpReg),cY+132); 
g.drawString(strAddr,cX+(direction>0?60:-105)+charOffset(address),cY+8); 

g.setColor(Color.darkGray); 
g.drawRect(cX+(direction>0?-73:32),cY-97,44,200); 
g.drawRect(cX+(direction>0?-130:104),cY-97,44,200); 
g.setColor(Color.lightGray); 
g.draw3DRect(cX+(direction>0?-72:33),cY-96,42,198,false); 
g.draw3DRect(cX+(direction>0?-129:105),cY-96,42,198,false); 
g.setColor(pwFill); 
g.fillRect(cX+(direction>0?-128:34),cY+102-3*pwCount,41,3*pwCount); 
g.setColor(rpFill); 
g.fillRect(cX+(direction>0?-71:106),cY+102-(int)(3*rpCount/4),41, 

(int)(3*rpCount/4)); 

Figure 146. Intelligent Tactor object JAVA source code, (continued) 
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private int charOffset(int iTmp) { 
int iRtn=0; 
if (iTmp<100) 

++iRtn; 
if (iTmp<10) 

++iRtn; 
return iRtn*8; 

} 
} 

Figure 146. Intelligent Tactor object JAVA source code, (continued) 

2. Command Byte 

The "TIC Command" class contains the command byte and transmission time values 

for each simulation command. This object includes methods for initialization, parameter 

retrieval, and graphic display. Figure 147 contains the complete JAVA source code that 

implements the TIC command class. 

/*   
* TlCCommand 1.1 ==> This class manages commands to be sent to the TIC. 
* 
* Copyright (c) 1999 Jeff Link, All Rights Reserved. 
* Permission to use, copy, modify, and distribute this software and its 
* documentation for NON-COMMERCIAL purposes and without fee is hereby 
* granted. 
* 
* The author makes on claims regarding the suitability of this software 
* and shall not be liable for any damages suffered as a result of using, 
* modifying, or distributing this software or its derivatives. 
*  */ 

import java.awt.Graphics; 
import java.awt.Color; 
import java.awt.Font; 
import java.lang.Math; 

public class TlCCommand { 
private int word, time; 
private Color clrText, clrBorder, clrBack; 
private Font labelFont = new Font("Serif", Font.PLAIN, 24); 
private String strWord; 

Figure 147. TIC Command object JAVA source code. 
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/* * 

* Constructs a TICCommand. 
* @param in_word    The byte command to transmit 
* Sparam in_time    Time to transmit the command 
*/ 

public TICCommand(int in_word, int in_time) { 
clrText = Color.blue; 
clrBorder = Color.black; 
clrBack = Color.white; 
word=in_word; 
time=in_time; 
if (word<128) 

strWord="A"+String.valueOf(word); 
else if (word<192) 

strWord="P"+String.valueOf(word-12 8); 
else 

strWord="R"+String.valueOf(word-192); 

• } 

/** 

* Gets the command word. 
*/ 

public int getCommandO { 
return word; 

} 

/** 

* Gets the time to transmit. 
*/ 

public int getTimeO { 
return time; 

} 

/** 

* Draws the TICCommand on a graphics object. 
* Oparam g The graphics object to draw the command upon 
* @param cX        The x-coord for command center 
* @param cY        The y-coord for command center 
*/ 

public void drawCommand(Graphics g, int cX, int cY) { 
int tX=cX-8, tY=cY-23, dX=60, dY=48; 
g.setColor(clrBack); 
g.fillRoundRect(tX,tY,dX+l,dY+l,20,20); 
g.setColor(clrBorder); 
g.drawRoundRect(tX,tY,dX,dY, 20, 20) ; 
g.setColor(clrText); 
g.setFont(labelFont); 
g.drawstring(strWord,tX+32-strWord.length()*7,tY+35); 

} 

Figure 147. TIC Command object JAVA source code, (continued) 
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3. TIC Demo 

The "TIC Demo" class contains the parameters required to combine the tactor and 

TIC command classes into an animated tactile array. This class is the core of the applet and 

implements multi-threading and mouse event processing. The TIC demonstration 

instantiates two intelligent tactors and an array of TIC commands. This object includes 

methods for initialization, mouse event processing, animation timing, and graphic display. 

The applet continuously loops through time, resetting to zero when the maximum time is 

reached. The applet resets to the initial conditions when the mouse button is released in the 

applet active area. Figure 148 contains the complete JAVA source code that implements the 

TIC demonstration class. 

/*  
* TICDemo 1.1 ==> This class demonstrates TIC operations. 
* 

* Copyright (c) 1999 Jeff Link, All Rights Reserved. 
* Permission to use, copy, modify, and distribute this software and its 
* documentation for NON-COMMERCIAL purposes and without fee is hereby 
* granted. 
* 
* The author makes on claims regarding the suitability of this software 
* and shall not be liable for any damages suffered as a result of using, 
* modifying, or distributing this software or its derivatives. 
*  */ 

import java.awt.Graphics; 
import Java.awt.Color; 
import java.awt.Image; 
import j ava.awt.Font ; 
import java.awt.event.MouseListener; 
import j ava.awt.event.MouseEvent; 
import Tactor; 
import TICCommand; 

Figure 148. Tactile Array Demonstration object JAVA source code. 
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public class TICDemo extends Java.applet.Applet 
implements Runnable, MouseListener { 

private int sleep=100,height=440,width=700,tt,currCmd,lästernd; 
private Tactor tl = new Tactor(180, 170, 0, 1); 
private Tactor t2 = new Tactor(520, 170, 1, 2); 
private Thread animate=null; 
Image backBuffer; 
private Graphics backGC; 
private TlCCommand[] cmdList; 
private Font labelFont = new Font("Serif", Font.BOLD, 30); 

public void initO {      // Initialize all variables and classes 
tt=0; 
fillCommands(); 
updateTactors() ; 
try { 
backBuffer = createlmage(width, height); 
backGC = backBuffer.getGraphics() ; 

} catch (Exception e) { backGC=null; } 
addMouseListener(this); 

} 

public void destroy() {    // Class destructor 
removeMouseListener(this); 

} 

private void fillCommands() {   // Fill command array 
cmdList = new TlCCommand[10]; 
cmdList[0] = new TlCCommand(127,100) 
cmdList[l] = new TlCCommand(161,200) 
cmdList[2] = new TlCCommand(209,300) 
cmdList[3] = new TlCCommand(2,400); 
cmdList[4] = new TlCCommand(195,500) ; 
cmdList[5] = new TlCCommand(0,600); 
currCmd=0; 
lastCmd=5; 
cmdList[6] = new TlCCommand(0,0); 

} 

private void updateTactors() {  // Updates the tactors when required 
if'(tt==0) {  // reset tactors and command list when time restarts 

tl.initialize(); 
t2.initialize() ; 
currCmd=0; 

} 
if   (tt==cmdList[currCmd].getTimeO)   {       //  transmit  the command 
tl.issueCommand(cmdList[currCmd].getCommand()); 
t2.issueCommand(cmdList[currCmd].getCommand()); 
++currCmd; 

} 
tl.updateTactor(tt); 
t2.updateTactor(tt) ; 

} 

Figure 148. Tactile Array Demonstration object JAVA source code, (continued) 
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private void paintApplet(Graphics g) {  // Paint the applet 
int ii=currCmd; 
tl.drawTactor(g); 
t2.drawTactor(g); 
while (ii <= lastCmd) { 

cmdList[ii] .drawCcommand(g, cmdList[ii] .getTimeO , 360) ; 
++ii; 

} 
} 

public void update(Graphics g) { // When update is called 
if (backBuffer != null) { 

// double-buffering available 
backGC.setColor(Color.lightGray); 
backGC.fillRect(0,0,width,height); 
backGC.setColor(Color.white); 
backGC.fillRect(20,400,tt+1,27); 
backGC.setColor(Color.black); 
backGC.drawRect(20,400,661, 27); 
backGC.setFont(labelFont); 
backGC.drawstring("time",width/2-20,425); 
paintApplet(backGC); 
g.drawlmage(backBuffer, 0, 0, this); 

} 
else { 
//no double-buffering 
g.setColor(Color.lightGray); 
g.fillRect(0,0,width,height); 
g.setColor(Color.white); 
g.fillRect(2 0,400,tt+l,27) ; 
g.setColor(Color.black) ; 
g.drawRect(20,400,661,27); 
g.setFont(labelFont); 
g.drawstring("time",width/2-20,425) ; 
paintApplet(g); 

} 
} 

public void run() { //Run the applet 
while (true) { 

if (tt<660) 
++tt; 

else 
tt=0; 

updateTactors(); 
repaint(); 
try { Thread.sleep(sleep); } catch (InterruptedException e) { } 

} 
} 

public void start () {  // When the applet is started 
if (animate == null) { 
animate = new Thread(this); 
animate.start(); 

} 
} 

Figure 148. Tactile Array Demonstration object JAVA source code, (continued) 

220 



public void stopO {  // When the applet is stopped 
if (animate != null) 

animate=null; 
} 

// These functions are required for the MouseListener interface 

public void mouseReleased(MouseEvent e) { // Clicked on demo 
tt=0; 
updateTactors(); 
repaint(); 

} 

public void mousePressed(MouseEvent e) { } 
public void mouseEntered(MouseEvent e) { } 
public void mouseExited(MouseEvent e) { } 
public void mouseClicked(MouseEvent e) { } 

} 

Figure 148. Tactile Array Demonstration object JAVA source code, (continued) 

4. Demonstration Applet HTML File 

A JAVA applet runs as a process embedded in an "html" file. This configuration 

allows applets to be executed by any JAVA compliant web browser. Figure 149 contains 

the complete HTML code that executes the Tactile Interface demonstration applet. 

<html> 
<head> 
<meta http-equiv="Content-Type" 
content="text/html; charset=iso-8859-l"> 
<title>Tactile Interface Demonstration (l.l)</title> 
</head> 

<body bgcolor="#C0C0C0"> 

<hl align="center">Tactile Interface Demonstration/hl> 

<p align="center"xapplet  code="TICDemo.class"   codebase="./' 
align="baseline"  width="700"  height="440"></applet> </p> 
</body> 
</html> 

Figure 149. Tactile Demonstration Applet HTML source code. 
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APPENDIXE. VLSI LOGIC ELEMENT DESIGN 

VLSI logic element design consists of determining the  schematic transistor 

connections, testing the planned circuit using SPICE simulation, and then constructing the 

element using the VLSI layers.  This appendix provides those three design phases for all 

logic elements in the TIC design. 

A. LOGIC ELEMENT SCHEMATICS 

The schematics for all logic elements are contained in the following subsections. 

1. Inverter 

Figure 150. Inverter schematic. 

2. Two Input NAND 

a  <> out 

Hr 

2 
b 

Figure 151. Two Input NAND Gate schematic. 
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3. Three Input NAND 
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b 

i«: f\ ^ out 
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Figure 152. Three Input NAND Gate schematic. 

4. Four Input NAND 
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f, M > out 
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Figure 153. Four Input NAND Gate schematic. 

5. Three Input AND 

Figure 154. Three Input AND Gate schematic. 
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6. Four Input AND 

Figure 155. Four Input AND Gate schematic. 

7. Two Input NOR 
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Figure 156. Two Input NOR Gate schematic. 

8. Three Input NOR 
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Figure 157. Three Input NOR Gate schematic. 
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9. Two Input XOR 
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Figure 158. Two Input XOR Gate schematic. 

10. Two Input XNOR 

Figure 159. Two Input XNOR Gate schematic. 
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11. D flip Flop with Clear 

Figure 160. D Rip Flop with Clear schematic. 

12. Two Input Multiplexer 

Figure 161. Two Input Multiplexer schematic. 

B. LOGIC ELEMENT SPICE SIMULATIONS 

The SPICE simulation files used to evaluate logic element design response are 

contained in the following subsections. 
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1. Inverter 

* File: inverter.cir 
* CMOS Inverter DC Transfer Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PULSE(0 5 .5N IN IN 19N 40N) 

* Main Circuit 
Xia a o 1 0 INV 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .001N 40N 

.END 

Figure 162. Inverter SPICE model source code. 

2. Two Input NAND 

* File: nand2.cir 
* CMOS 2-input NAND Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmo s.c i r 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 0 40n 0 4In 5 50n 5 5In 5 

60n 5 61n 5 70n 5 7In 0 80n 0 8In 0 90n 0 9In 0 lOOn 0 lOln 5 
HOn 5 llln 0 120n 0 121n 5 130n 5 131n 0 140n 0) 

VINb b 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 0 
60n 0 61n 5 70n 5 7In 0 80n 0 8In 5 90n 5 91n 0 lOOn 0 lOln 0 
HOn 0 llln 5 120n 5 121n 0 130n 0 13In 0 140n 0) 

* Main Circuit 
Xla a b o 1 0 NAND2 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .001N 140N 

.END 

Figure 163. Two Input NAND gate SPICE model source code. 
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3. Three Input NAND 

* File: nand3.cir 
* CMOS 3-input NAND Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 31n 5 40n 5 41n 5 50n 5 5In 0 

60n 0 61n 5 70n 5) 
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 0 40n 0 41n 5 50n 5 51n 5 

60n 5 61n 5 70n 5) 
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 5 

60n 5 61n 5 70n 5) 

* Main Circuit 
Xla a b c o 1 0 NAND3 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 70N 

.END 

Figure 164. Three Input NAND gate SPICE model source code. 
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4. Four Input NAND 

* File: nand4.cir 
* CMOS 4-input NAND Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 51n 0 

60n 0 6In 5 70n 5 71n 5 80n 5 8In 5 90n 5) 
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 0 40n 0 41n 5 50n 5 5In 5 

60n 5 -61n 5 70n 5 7In 5 80n 5 81n 5 90n 5) 
VINc c 0 PWMOn 5 lOn 5 lln 0 20n 0 2In 5 30n 5 31n 5 40n 5 4In 5 50n 5 51n 5 

60n 5 6In 5 70n 5 71n 5 80n 5 8In 5 90n 5) 
VINd d 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5 

60n 5 61n 5 70n 5 7In 0 80n 0 81n 5 90n 5) 

* Main Circuit 
Ma 1 a o 1 CMOSP W=6U L=2U 
Mb o a 2 0 CMOSN W=3U L=2U 
Mc 1 b o 1 CMOSP W=6U L=2U 
Md 2 b 3 0 CMOSN W=3U L=2U 
Me 1 c o 1 CMOSP W=6U L=2U 
Mf 3 C 4 0 CMOSN W=3U L=2U 
Mg 1 d o 1 CMOSP W=6U L=2U 
Mh 4 d 0 0 CMOSN W=3U L=2U 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 90N 

.END 

Figure 165. Four Input NAND gate SPICE model source code. 
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5. Three Input AND 

* File: and3.cir 
* CMOS 3-input AND Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 0 

60n 0 61n 5 7 On 5) 
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 21n 5 30n 5 3In 0 40n 0 41n 5 50n 5 51n 5 

60n 5 61n 5 70n 5) 
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 5 

60n 5 61n 5 70n 5) 

* Main Circuit 
Xla a b c 2 1 0 NAND3 
Xia 2 0 10 INV 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 140N 

. END 

Figure 166. Three Input AND gate SPICE model source code. 
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6. Four Input AND 

* File: and4.cir 
* CMOS 4-input AMD Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 5In 0 

60n 0 6In 5 70n 5 71n 5 80n 5 81n 5 90n 5) 
VINb b 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 0 40n 0 41n 5 50n 5 5In 5 

60n 5 6In 5 70n 5 7In 5 80n 5 8In 5 90n 5) 
VINc c 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5 

60n 5 61n 5 70n 5 71n 5 80n 5 81n 5 90n 5) 
VINd d 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 3In 5 40n 5 4In 5 50n 5 5In 5 

60n 5 6In 5 70n 5 7In 0 80n 0 8In 5 90n 5) 

* Main Circuit 
Ma 1 a 5 1 CMOSP W=6U L=2U 
Mb o a 2 0 CMOSN W=3U L=2U 
Mc 1 b 5 1 CMOSP W=6U L=2U 
Md 2 b 3 0 CMOSN W=3U L=2U 
Me 1 c 5 1 CMOSP W=6U L=2U 
Mf 3 C 4 0 CMOSN W=3U L=2U 
Mg 1 d 5 1 CMOSP W=6U L=2U 
Mh 4 d 0 0 CMOSN W=3U L=2U 
Xia 5 0 10 INV 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 90N 

.END 

Figure 167. Four Input AND gate SPICE model source code. 
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7. Two Input NOR 

* File: nor2.cir 
* CMOS 2-input NOR Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 1.05 

* Input Signals 
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 30n 0 3In 5 40n 5 41n 0 50n 0 51n 5 

60n 5 6In 0 70n 0 71n 5 80n 5 81n 5 90n 5 9In 0 lOOn 0 lOln 5 
HOn 5 llln 5 120n 5 121n 0 130n 0) 

VINb b 0 PWL(0n 0 lOn 0 lln 5 20n 5 21n.O 30n 0 3In 0 40n 0 41n 0 50n 0 51n 5 
60n 5 6In 5 7'0n 5 7In 5 80n 5 81n 0 90n 0 9In 5 lOOn 5 lOln 0 
HOn 0 llln 5 120n 5 121n 0 130n 0) 

* Main Circuit 
Xla a b o 1 0 NOR2 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 130N 

.END 

Figure 168. Two Input NOR gate SPICE model source code. 
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8. Three Input NOR 

* File: nor3.cir 
* CMOS 3-input NOR Transient Characteristics 

* CMÖSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 21n 0 30n 0 31n 0 40n 0 4In 0 50n 0 51n 5 

60n 5 61n 0 70n) 
VINb b 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 3On 0 3In 5 40n 5 41n 0 50n 0 51n 0 

60n 0 6In 0 70n) 
VINc c 0 PWL(0n 0 lOn 0 lln 5 20n 5 2In 0 30n 0 31n 0 40n 0 4In 0 50n 0 5In 0 

60n 0 61n 0 70n) 

* Main Circuit 
Xla a b c o 1 0 NOR3 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 70N 

.END 

Figure 169. Three Input NOR gate SPICE model source code. 
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9. Two Input XOR 

* File: xor2.cir 
* CMOS 2-input XOR Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PWL(0n 0 lOn 0 lln 0 20n 0 2In 0 30n 0 3In 5 40n 5 4In 0 50n 0 51n 5 

60n 5 6In 0 70n 0 7In 5 80n 5 8In 5 90n 5 9In 0 lOOn 0 lOln 5 
HOn 5 llln 5 120n 5 121n 0 130n 0) 

VINb b 0 PWL(0n 0 lOn 0 lln 5 20n 5 2In 0 30n 0 3In 0 40n 0 41n 0 50n 0 5In 5 
60n 5 6In 5 70n 5 7In 5 80n 5 8In 0 90n 0 9In 5 lOOn 5 lOln 0 
HOn 0 llln 5 120n 5 12In 0 130n 0) 

* Main Circuit 
Xla a b o 1 0 XOR2 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 130N 

.END 

Figure 170. Two Input XOR gate SPICE model source code. 
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10. Two Input XNOR 

* File : xnor2g.cir 
* CMOS 2-input XNOR-gate Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmo s.c i r 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa a 0 PULSE(5 0 5.5N IN IN  9N 2ON) 
VINb b 0 PULSE(5 0 .5N IN IN 24N 50N) 

* Main Circuit 
Ma 1 a 2 1 CMOSP W=6U L=2U 
Mb 2 a 0 0 CMOSN W=3U L=2U 
Mc 1 2 4 1 CMOSP W=6U L=2U 
Md 4 2 0 0 CMOSN W=3U L=2U 
Me 4 3 o 1 CMOSP W=6U L=2U 
Mf 4 b o 0 CMOSN W=3U L=2U 
Mg 2 b o 1 CMOSP W=6U L=2U 
Mh 2 3 o 0 CMOSN W=3U L=2U 
Mi 1 b 3 1 CMOSP W=6U L=2U 
Mj 3 b 0 0 CMOSN W=3U L=2U 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN . 005N 100N 

.END 

Figure 171. Two Input XNOR gate SPICE model source code. 
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11. D Flip Flop with Clear 

* File: dflopgc.cir 
* CMOS D-FLIP/FLOP gated w/ Clear Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINd d 0 PULSE(0 5 .5N IN IN 19N 40N) 
VINnc nc 0 PWL(0n 5 48n 5 49n 0 50n 0 51n 5 112n 5 113n 0 117n 0 118n 5 

125n 5) 
VINclk elk 0 PULSE(0 5 2.5N IN IN 9N 2ON) 

* Main Circuit 
Xda d elk nc q nq 1 0 DFLOPGC 

Cl q 0 .IP 
C2 nq 0 -IP 

* Simulation Parameters 
.TRAN .001N 125N 

.END 

Figure 172. D Hip Flop with Clear logic element SPICE model source code. 
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12. Two Input Multiplexer 

* File: mux2.cir 
* CMOS 2-input MUX Transient Characteristics 

* CMOSP & CMOSN model definitions 
.INCLUDE cmos.cir 
.INCLUDE subckt.cir 

* Power Supplies 
VDS 10 5 

* Input Signals 
VINa. a 0 PWL(0n 5 lOn 5 lln 5 20n 5 2In 5 30n 5 31n 5 40n 5 41n 5 50n 5 5In 0 

60n 0 6In 5 70n 5) 
VINb b 0 PWL(0n 5 lOn 5 lln 5 20ri 5 2In 5 30n 5 3In 0 40n 0 4In 5 50n 5 51n 5 

60n 5 61n 5 70n 5) 
VINs s 0 PWL(0n 5 lOn 5 lln 0 20n 0 2In 5 30n 5 3In 5 40n 5 41n 5 50n 5 51n 5 

60n 5 61n 5 70n 5) 

* Main Circuit 
Xla a b s o 1 0 MUX 

Cl o 0 .IP 

* Simulation Parameters 
.TRAN .0001N 140N 

.END 

Figure 173. Two Input MUX logic element SPICE model source code. 
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C. VLSI LAYOUT 

1. Legend of Layout Layers 

Graphic Symbol Layer Description 

■ ■ ■ N well - a region of the silicon substrate that has 
more free electrons than free holes. 

i P well - a region of the silicon substrate that has 
more free holes than free electrons. 

Active - layout area to be implanted with impurities 
to provide primary charge carriers. 

Active X - connection shaft that allows contact 
between metal 1 and the active area. 

P select - boundary of area to be implanted with an 
impurity providing free holes. 

N select - boundary of area to be implanted with an 
impurity providing free electrons. 

& 
^ 

Poly 1 - polysilicon doped for improved 
conduction; primarily used for FET gates. 

■ Poly 1 Connect - connection shaft that allows 
contact between metal 1 and polysilicon. 

Metal 1 - lowest layer of aluminum used to route 
signals and power. 

Metal 2 - upper layer of aluminum used to route 
signals and power. 

■ Via X - connection shaft between metal 1 layer and 
metal 2. 

Table 25. Legend for Layers used in VLSI Layout. 
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2. Inverter 

Figure 174. Inverter layout. 
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3. Two Input NAND 

Figure 175. Two Input NAND Gate layout. 
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4. Three Input NAND 

Figure 176. Three Input NAND Gate layout. 
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5. Four Input NAND 
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Figure 177. Four Input NAND Gate layout. 

243 



6. Three Input AND 

Figure 178. Three Input AND Gate layout. 
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7. Four Input AND 

Figure 179. Four Input AND Gate layout. 
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8. Two Input NOR 

Figure 180. Two Input NOR Gate layout. 
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9. Three Input NOR 

Figure 181. Three Input NOR Gate layout. 
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10. Two Input XOR 

Figure 182. Two Input XOR Gate layout. 
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11. Two Input XNOR 

Figure 183. Two Input XNOR Gate layout. 
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12. D FBp Flop with Clear 

Figure 184. D Flip Flop with Clear layout. 
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13. Two Input Multiplexer 

A\ \h ; Mt um 

Figure 185. Two Input Multiplexer layout. 
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APPENDIX F. PARALLEL DATA MODULATOR DESIGN 

Each module used to create the Parallel Port Data Modulator was first modeled 

using Verilog®. When proper system operation was obtained, ABEL™ was used to create 

the required JEDEC format data files for PLD programming. Reference 5 contains 

extensive information regarding PLD programming using ABEL and includes an 

educational version of the ABEL™ software written by Data I/O Corporation. 

A. COMMAND MODULATOR DESIGN USING VERILOG® 

The Parallel Port Data Modulator was modeled and tested using Verilog".   The 

source code for the test program is provided in Figure 186. 
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// File:  xmit_test.v 
// 
// Description:  Test bench for Parallel Port Data Modulator 
// 
// Author: Jeff Link 

module xmit_test; 

reg  [7:0] d; 
reg  Str; 
wire [7:0] q; 
wire [3:0] s; 
reg Vdd,Gnd; 

clock   clkl (elk); 
reg4_pls rg4a (d[7:4],Vdd,Vdd,clk,q[7:4],Ea,Oa); 
reg4_pls rg4b (d[3:0],Ea,0a,clk,q[3:0],eq,odd); 
mux8tl  mx (q,s[2:0],mxout); 
control cntl (Str,eq,mxout,odd,elk,s,ackn,busy,out); 

initial begin 
Vdd=l; 
Gnd=0; 
d=55; 
Str=0; 
$display("\t\t\t  d    out ackn busy s"); 
$monitor("time %0d \t%b %b   %b   %b  %d",$time,d,out,ackn,busy,s) 
#5; 
Str=l; 
#20 Str=0; 
#400 

d=85; 
#20 
Str=l; 
#20 Str=0; 
#400 

d=205; 
#20 
Str=l; 
#20 Str=0; 
#400 
$finish; 

end 

/*  always @ (q) begin 
if (odd == ~q) begin 

$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd); 
end 

end 
*/ 
endmodule 

,®. Figure 186. Test bench for Parallel Port Data Modulator Verilog  model source code 
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1. Four-Bit Register with Equality and Parity Calculation 

The four-bit register with equality and parity calculation was modeled and tested 

using Verilog®. The source code for the test program is provided in Figure 187 and the 

source code for the model is provided in Figure 188. 

// File:  reg4_pls_test.v 
// 
// Description:  Test bench for Four-Bit Register w/ Equal & Parity 
II 
II  Author: Jeff Link 

module reg4_pls_test; 

reg  [7:0] d; 
wire elk; 
wire [7:0] q; 
reg Vdd,Gnd; 

clock clkl (elk); 
reg4_pls rg4a (d[7:4],Vdd,Vdd,clk,q[7:4],Ea,Oa); 
reg4_pls rg4b (d[3:0],Ea,Oa,elk,q[3:0],eq,odd); 

initial begin 
Vdd=l; 
Gnd=0; 
d=0; 
$display("\t\t\t  d       q      eq odd"); 
$monitor("time %0d \t%b %b %b %b",$time,d,q,eq,odd); 
#5; 
for (d=0; d<255; d=d+l)  begin 

#40; 
end 

$finish; 
end 

endmodule 

Figure 187. Test bench for Four-Bit Register Verilog® model source code. 
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// *********************************************************************** 

// File:  reg4_pls.v 
// 
// Description:  Behavioral Model of Four-Bit Register w/ Equal & Parity. 

// 
// Author: Jeff Link 
//*********************************************************************** 

module reg4_pls (d,Ein,Oin,elk,q,Eout,Oout); 
input d,Ein,Oin,elk; 
wire  [3:0] d; 
output q,Eout,Oout; 
reg [3:0] q; 
reg Eout,Oout; 

always @(d)  begin 
Eout = (q == d)&Ein; 

end 

always @(Ein)  begin 
Eout = (q == d)&Ein; 

end 

always @(Oin)  begin 
Oout = (Aq)~0in; 

end 

always @(posedge elk)  begin 
q = d; 
Eout = (q == d)&Ein; 
Oout = ("qJ^Oin; 

end 

endmodule 

Figure 188. Four-Bit Register Verilog® model source code. 

2. Control State Machine 

The control state machine was modeled and tested using Verilog®. The source code 

for the test program is provided in Figure 189 and the source code for the model is provided 

in Figure 190. 
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//♦A********************************************************************* 

// File:  control_test.v 
// 
// Description:  Test bench for Control State Machine 
// 
// Author: Jeff Link 

module control_test; 

reg Str,Eqln,Din,Par; 
wire elk; 
wire [3:0] s; 
reg Vdd,Gnd; 

clock  clkl (elk); 
control cntl (Str,Eqln,Din,Par,elk,s,ackn,busy,out); 

initial begin 
Vdd=l; 
Gnd=0; 
$display("\t\t\tStr Eqln Din Par s ackn busy out"); 
$monitor('"time %0d \t %b  %b  %b  %b %d %b %b %b", 

$time,Str,Eqln,Din,Par,s,ackn,busy,out); 
Str=0; 
Eqln=0; 
Din=l; 
Par=0; 
#5; 
Str=l; 
#20; 
Eqln=l; 
#20; 
Str=0; 
#20; 
Din=0; 
#20; 
Din=l; 
#20; 
Din=l; 
#20; 
Din=0; 
#20; 
Din=l; 
#20; 
Din=0; 
#20; 
Din=l; 
#200; 
$finish; 

end 

/*  always @ (q) begin 
if (odd == ~q) begin 
$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd) 

end 
end 

*/ 
endmodule 

Figure 189. Test bench for Control State Machine Verilog® model source code. 
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// File:  control.v 
// 
// Description:  Behavioral Model of Control State Machine 
// 
// Author: Jeff Link 

module control (Str,Eqln,Din,Par,elk,st,ackn,busy,out); 
input Str,Eqln,Din,Par,elk; 
output st,ackn,busy,out; 
reg [3:0] st; 
reg ackn,busy,out; 

initial begin 
st = 0; 
ackn=0; 
busy=0; 
out=l; 

end 

always @(posedge elk)  begin 
case (st) 

0: if (Str&Eqln) st = 4; 
4: st = 12; 
12: st = 8; 
8: st = 9; 
9: st = 11; 

11: st = 10; 
10: St = 14; 
14: St = 15; 
15: st = 13; 
13: St = 5; 
5: st = 1 
1: St = 0 

endcase 
end 

always @(st)  begin 
if (st == 0) busy = 0; 
else busy = 1; 
if (st == 4) ackn = 1; 
else ackn = 0; 
if (st == 0) out = 1; 
else if (st == 1) out = 1; 
else if (st == 4) out = 0; 
else if (st ==  5) out = Par; 
else out = Din; 

end 

always @(Din)  begin 
if (st == 0) out = 1; 
else if (st == 1) out = 1; 
else if (st == 4) out = 0; 
else if (st == 5) out = Par; 
else out = Din; 

end 

endmodule 

Figure 190. Control State Machine Verilog® model source code. 
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3. Eight-to-One Multiplexer 

The eight-to-one multiplexer was modeled and tested using Verflog®. The source 

code for the test program is provided in Figure 191 and the source code for the model is 

provided in Figure 192. 

// File: mux8tl_test.v 
// 
// Description:  Test bench for Eight to One Multiplexer 
// 
// Author: Jeff Link 

module mux8tl_test; 

reg  [7:0] d; 
reg  [2:0] sei; 
reg Vdd,Gnd; 

mux8tl mxl (d,sei,out); 

initial begin 
Vdd=l; 
Gnd=0; 
d=0 ; 
$display("\t\t\t  d      sei  out") ; 
$monitor("time %0d \t%b %b %b",$time,d,sei,out),- 
#5; 
for (d=55; d<199; d=d+13)  begin 

for (sel=0; sel<7; sel=sel+l)  begin 
#40; 

end 
#40; 

end 

$finish; 
end 

/*  always @ (q) begin 
if (odd == Aq) begin 

$display("time %0d \t%b %b %b %b Parity Error",$time,d,q,eq,odd); 
end 

end 
*/ 
endmodule 

Figure 191. Test bench for Eight-to-One Multiplexer Verflog® model source code. 
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// File:  mux8tl.v 
// 
// Description:  Behavioral Model of Eight to One Multiplexer. 
// 
// Author: Jeff Link 
i,******-/,******************************* ********************************* 

module mux8tl (a,sei,out); 
input a,sei; 
wire  [7:0] a; 
wire  [2:0] sei; 
output out; 
reg out; 

always @(sel)  begin 
case (sei) 

0 out = a[6] 
1 out = a[5] 
2 out = a[3] 
3 out = a[4] 
4 out = a[7] 
5 out = a[0] 
6 out = a[2] 
7 out = a[l] 

ende :ase 
end 

endmodui Le 

Figure 192. Eight-to-One Multiplexer Verilog® model source code. 
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B. COMMAND MODULATOR IMPLEMENTATION USING ABEL 

When operating properly, the Parallel Port Data Modulator elements defined using 

Verilog® were converted to JEDEC file format using ABEL™. The source code created for 

this conversion is included in the following subsections. These programs were compiled 

and optimized to create the JEDEC format data files needed for PLD programming. 

1. Four-Bit Register with Equality and Parity Calculation 

The four-bit register with equality and parity calculation was converted from 

Verilog® source code to JEDEC format using the ABEL™ code provided in Figure 193. 
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Module reg4_pls 
Title 'Four-Bit Register with Equality & Parity outputs' 

Clk pin 1; 
D4..Dl pin 2..5; 
Q4..Q1 pin 19..16 istype 'reg,buffer'; 
!Ein pin 8; 
Oin pin 9; 
ODD pin 14 istype 'com'; 
EQ pin 15 istype 'com'; 
!Eout pin 13 istype 'com'; 
Oout pin 12 istype 'com'; 
Input  = [D4..D1]; 
Output = [Q4..Ql]; 

Equations 
Output := Input; 
Output.elk = !Clk; 
EQ = (Output == Input); 
Eout = EQ & Ein; 
ODD = Q4 $ Q3 $ Q2 $ Ql; 
Oout = ODD $ Oin; 

Test_Vectors ( [Clk Input !Ein Oin -> Output !Eout Oout]) 

[ o ~h0 0 0 -> [ "hO 0 0  ] ; 

[ o "hO 0 1 -> [ "hO 0 1  3 ; 
[ 1 "hO 1 1 -> "hO 1 1  ]; 

C 1 ~h0 1 0 -> Ah0 1 0  ]; 

[ o ~h0 0 0 -> ~h0 0 0  ]; 

[ o "h7 0 1 -> ~h0 1 1  ] ; 
[ l ~h7 0 0 -> ~h0 1 0  ]; 

[ i ~h7 0 0 -> Ah0 1 0  ]; 
[ o ~h7 0 0 -> ~h7 0 1  ] ; 
[ o Ah7 0 1 -> "h7 0 0  ] ; 

[ 1 "h7 0 0 -> "h7 0 1  ] ; 
[ 1 ~hF 0 0 -> Ah7 1 1  ] ; 
[ o ~hF 0 0 -> AhF 0 0  ] ; 

[ o AhF 0 0 -> AhF 0 0  ] ; 

[ 1 "hF 1 0 -> ~hF 1 0  ]; 

[ 1 
AhF 1 1 -> AhF 1 1 ]; 

[ o ~hF 0 1 -> ~hF 0 1 ]; 
[ o "hO 0 0 -> AhF 1 0  ]; 
[ 1 ~h0 1 0 -> ^hF 1 0  ] ; 

[ 1 "hO 0 1 -> ~hF 1 1  ] ; 
[ o Ah0 0 1 -> Ah0 0 1 ] ; 
[ o Ah0 0 0 -> ^hO 0 0 ] ; 
[ 1 ~h0 0 0 -> Ah0 0 0  ] ; 

[ 1 ~h2 0 0 -> ~h0 1 0  ] ; 

[ o Ah2 0 0 -> Ah2 0 1  ] ; 
[ o "h2 0 1 -> "h2 0 0  ]; 
[ 1 Ah2 1 0 -> "h2 1 1  ]; 
[ 1 ~h2 1 1 -> "h2 1 0  ] ; 

[ o ~h2 1 0 -> ~h2 1 1  ]; 
[ o "h2 0 0 -> Ah2 0 1  ]; 

End 

Figure 193. Four-Bit Register ABEL™ source code. 
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2. Control State Machine 

The control state machine was converted from Verilog® source code to JEDEC 

format using the ABEL™ code provided in Figure 194. 

module control 
title 'Control State Machine ' 

Clk pin 1; 1 Inputs 
Din pin 2 ; 
!Par pin 9 ; 
Strb pin 11; Strobe is active low 
!Ein pin 8; 
s3..sO pin 16. .19 istype 'reg';  "State bits 
out pin 14    istype 'reg,buffer'; 
busy pin 12    istype 'reg'; 
Ackn pin 13    istype 'reg'; 
iStrb pin 15    istype 'com'; 

Equations 
[s3..s0] .elk  = Clk 
out.elk = Clk 
busy.elk = Clk 
Ackn.elk = Clk 
iStrb = !St3 :b; 

State_Diagram [s3..s0] 

State 0: out := 1 ; "Idle state 
busy := 0; 
Ackn := 1; 
If (iStrb&E: m) Then 4 Else 0 ; 

State 4: out := 1; "Standby, wait for strobe to reset 
busy := 1; 

n so that you only send one byte. 
Ackn := 0; 
If (ÜStrb) Then £ Else 4 ; 

State 5: out := 0; "Start bit 
busy := 1; 
Ackn := 1; 
Goto 13; 

Figure 194. Control State Machine ABEL   source code. 
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State 13: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 12; 

"Data bits 

State 12: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 8; 

State 8: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 10; 

State 10: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 14; 

State 14: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 15; 

State 15: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 11; 

State 11: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 9; 

State 9: out := Din; 
busy := 1; 
Ackn := 1; 
Goto 1; 

State 1: out := Par; 
busy := 1; 
Ackn := 1; 

"Parity bit 

Goto 0; 

Figure 194. Control State Machine ABEL™ source code, (continued) 
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Test_Vectors ( [Clk Din Strb Ein Par -> [ 

[ 0' .X. 1 0 .X. -> [ 

[ 1 .X. 1 0 .X. -> [ 

[ o .X. 0 0 .X. -> [ 

[ 1 .X. 0 0 .X. -> [ 
[ 0 .X. 0 1 .X. -> [ 

[ 1 .X. 0 1 .X. -> [ 

[ 0 .X. 0 1 .X. -> [ 

[ 1 .X. 0 1 .X. -> [ 

[ o .X. 0 1 .X. -> [ 

[ 1 .X. 0 1 .X. -> [ 

[ o .X. 0 1 .X. -> [ 

[ 1 .X. 1 1 .X. -> [ 
[ o .X. 1 1 .X. -> [ 

[ 1 .X. 1 1 .X. -> [ 

[ o .X. 1 1 .X. -> [ 

[ 1 1 1 1 .X. -> [ 

[ o 1 1 1 .X. -> [ 

[ 1 1 1 1 .X. -> [ 

[ o 0 1 1 .X. -> [ 

[ 1 0 1 1 .X. -> [ 

[ o 0 1 1 .X. -> [ 

[ 1 0 1 1 .X. -> [ 

[ o 1 1 1 .X. -> [ 

[ 1 1 1 1 .X. -> [ 
[ o 0 1 1 .X. -> [ 

[ 1 0 1 1 .X. -> [ 

[ o 1 1 1 .X. -> [ 
[ 1 1 1 1 .X. -> [ 

[ o 0 1 1 .X. -> [ 

[ 1 0 1 1 .X. -> [ 

[ o 1 1 1 .X. -> [ 

t 1 1 1 1 .X. -> [ 

[ o .X. 1 1 0 -> [ 

[ 1 -X. 1 1 0 -> [ 

[ o .X. 1 1 .X. -> [ 

[ 1 .X. 1 1 .X. -> [ 

[ o .X. 1 1 .X. -> [ 

[ 1 .X. 1 1 .X. -> [ 
[ o .X. 1 1 .X. -> [ 

[ 1 .X. 1 1 .X. -> [ 

[s3. .s0] 
0 
0 
0 
0 
0 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 

13 
13 
12 
12 

10 
10 
14 
14 
15 
15 
11 
11 
9 
9 
1 
1 
0 
0* 
0 
0 
0 
0 
0 

, out busy Ackn]) 
, .X. .X. ■ X. ] ; 

, 1 0 1  ] ; 
, 1 0 1 ] ; 
, 1 0 1 ' ] ; 
, 1 0 1 ] ; 
, 1 0 1 ] ; 
, 1 0 1 ] ; 
, 1 1 0 ] ; 
, 1 1 0 ] ; 
, 1 1 0 ] ; 
, 1 1 0  ] ; 
, 1 1 0 ] ; 
, 1 1 0  ] ; 
, 1 1 0  ] ; 
, 1 1 0  ] ; 

, o 1 1 ] ; 
, o 1 1 ]; 
, 1 1 1 ] ; 
, 1 1 1 ] ; 
, o 1 1 ] ; 
, o 1 1 ] ; 
, o 1 1 ] ; 
, o 1 1 ]; 
, 1 1 1 ] ; 
, 1 1 1 ]; 
, o 1 1 ]; 
, o 1 1  ]; 
, 1 1 1 ]; 
, 1 1 1 ] ; 
, o 1 1 ]; 
, o 1 1  ] ; 
, 1 1 1 ] ; 
, 1 1 1 ] ; 
, o 1 1 ] ; 
, o 1 1 ] ; 
, 1 0 1 ]; 
, 1 0 1 ] ; 
, 1 0 1 ]; 
, 1 0 1 ] ; 
, 1 0 1 ]; 

End 

Figure 194. Control State Machine ABEL™ source code, (continued) 

3. Eight-to-One Multiplexer 

The eight-to-one multiplexer was converted from Verflog® source code to JEDEC 

format using the ABEL™ code provided in Figure 195. 
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module mux8tl 

Title 'Eight to One Multiplexer' 
Clk   pin 11; 
a7..aO PIN 9 . . 2 ; 
s2. .sO PIN 14..12; 
out   PIN 15 ISTYPE 'com'; 
nClk  pin 16 istype 'com'; 

A     = [a7..a0]; 
Select = [s2..sO]; 

Equations 
out = (Select == 

# (Select == 
# (Select == 
# (Select == 
# (Select == 
# (Select == 
# (Select == 
# (Select == 

nClk = !Clk; 

1) 
3) 
7) 
6) 
2) 
0) 
4) 
5) 

aO 
al 
a2 
a3 
a4 
a5 
a6 
a7; 

Test_Vectors ( Select 
5 
4 
0 
2 
6 
7 
3 
1 
5 
4 
0 
2 
6 
7 
3 
1 

A 
~hAA 
~hAA 
^hAA, 
"hAA, 
^hAA, 
^hAA, 
"hM, 
~hAA 
Ah55, 
~h55, 
Ah55, 
"h55, 
"h55, 
"h55, 
~h55, 
"h55, 

Clk] 
0 ] 
1 
0 
0 
1 
1 
0 
1 ] 
0   ] 
1 ] 
0   ] 
t> ] 
1 ] 
1 ] 
0   ] 
1 ] 

-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 
-> 

End 

[out nClk]) 

[ 1 1     ] ; 
[   0 0     ]; 
[   1 1     ]; 
[  o 1    ] ; 
[   1 0     ] ; 
[   0 0     ] ; 
[   1 1     ] ; 
[   0 0     ]; 
[   0 1     ] ; 
[   1 0     ]; 
[ o 1  . ] ; 
[ 1 1     ] ; 
[ o 0     ] ; 
[ 1 , 0     ] ; 
[  o , 1     ] ; 
[ 1 , 0     ] ; 

Figure 195. Eight-to-One Multiplexer ABEL   source code. 
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C. COMMAND MODULATOR ELEMENT INFORMATION 

Compilation of the ABEL™ source code presented in the preceding section created 

the JEDEC format data files. These JEDEC data files were used to program the PLDs to 

perform the defined logic functions. Information is generated in the compilation process 

regarding utilization, performance, and layout. This chip information is written to a text file 

and the essential information from these files is included in the following subsections. 

Especially useful is the chip pin assignment diagram; required for laying out the printed 

circuit board. 
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1. Four-Bit Register with Equality and Parity Calculation 

Information regarding the four-bit register with equality and parity calculation is 

included in Figure 196. 

Four-Bit Register with Equality & Parity outputs 

===== P18CV8 Programmed Logic ==== 

ODD    = (  !Q1 & Q2 & Q3 & Q4 
#   Ql & !Q2 & Q3 & Q4 
#   Ql & Q2 & !Q3 & Q4 
#   !Q1 & !Q2 & !Q3 & Q4 
#   Ql & Q2 & Q3 & !Q4 
#   !Q1 & !Q2 & Q3 & !Q4 
#   !Q1 & Q2 & !Q3 & !Q4 

#   Ql & ! Q2 & ! Q3 & ! Q4 ) ; 

EQ = ! (  !D1 & Ql 
#   Dl & !Q1 
#   !D2 & Q2 
#   D2 & !Q2 
#   !D3 & Q3 
#   D3 & !Q3 
#   !D4 & Q4 
#   D4 & !Q4 ); 

Eout = !(  EQ & !Ein ); 

Oout = (  !ODD Si Oin 
#   ODD & !Oin ); 

Q4.D = (  D4 ); " ISTYPE 'BUFFER' 
Q4.C = (  !Clk ); 

Q3.D = (  D3 ) ; " ISTYPE 'BUFFER' 
Q3.C = (  !Clk ); 

Q2.D = (  D2 ) ; " ISTYPE 'BUFFER' 
Q2.C = (  !Clk ); 

Ql.D = (  Dl ); " ISTYPE 'BUFFER' 
Ql.C = (  !Clk ); 

Figure 196. Four-Bit Register Summary Information. 
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===== P18CV8 Chip Diagram 

P18CV8 

Clk 

D4 

D3 

D2 

Dl 

Ein 

Oin 

GND 

+ \ 
\ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 Vcc 

19 Q4 

18 Q3 

17 Q2 

16 Ql 

15 !EQ 

14 ODD 

13 !Eout 

12 Oout 

11 

P18CV8 Resource Allocations 

Device       | Resource  |  Design 
Resources     | Available j Requirement 

Part     | 
Utilization | Unused 

Dedicated input pins  j     10    j      7 
Combinatorial inputs  j     10.   |      7 
Registered inputs     |     -    |      0 

Dedicated output pins |     -   |      2 
Bidirectional pins    |     8    |      6 
Combinatorial outputs |     -   |      4 
Registered outputs   1     ~   1      4 
Reg/Com outputs      |     8    | 
Two-input XOR         |      -    J       0 

Buried nodes         |     -    |      0 
Buried registers     |     -    |      0 
Buried combinatorials |     -    |      0 

7      |     3 ( 30 %) 
7 j     3 ( 30 %) 

8 |     0(0%) 

8      |     0(0%) 

Figure 196. Four-Bit Register Summary Information, (continued) 
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=== P18CV8 Product Terms Distribution == 

Signal Pin Terms Terms Terms 
Name Assigned Used Max Unused 

ODD 14 8 8 0 
EQ 15 8 8 0 
Eout 13 1 8 7 
Oout 12 2 8 6 
Q4.REG 19 1 8 7 
Q3.REG 18 1 8 7 
Q2.REG 17 1 8 7 

Ql.REG 16 1 8 7 

==== List of Inputs/Feedbacks 

Signal Name Pin Pin Type 

D4 2 INPUT 
D3 3 INPUT 

D2 4 INPUT 
Dl 5 INPUT 
Clk 1 CLK/IN 

Ql 16 BIDIR 

Q2 17 BIDIR 

Q3 18 BIDIR 
Q4 19 BIDIR 
EQ 15 BIDIR 
Ein 8 INPUT 
ODD 14 BIDIR 
Oin 9 INPUT 

P18CV8 Unused Resources 

Pin 
Number 

Pin 
Type 

Product 
Terms 

Flip-flop 
Type 

6 
7 

11 

INPUT 
INPUT 
INPUT 

Figure 196. Four-Bit Register Summary Information, (continued) 
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2. Control State Machine 

Information regarding the control state machine is included in Figure 197. 

Control State Machine 

===== P18CV8 Programmed Logic 

iStrb    = (  !Strb ); 

s3.D 

s3.C 

s2.D 

s2.C 

sl.D 

sl.C 

sO.D 

sO.C 

s3.FB & sl.FB 
# S2.FB & !Sl.FB & sO.FB 
# S3.FB & isO.FB ); " ISTYPE 'BUFFER' 
Clk ) ; 

!s3.FB & S2.FB & !sl.FB 
# s2.FB & !sl.FB & sO.FB 
# s3.FB & sl.FB & IsO.FB 
# !s3.FB & !sl.FB & IsO.FB & iStrb & !Ein ); " ISTYPE 'BUFFER' 
Clk ) ; 

S3.FB  &  S2.FB  &   Sl.FB 
# S3.FB & !s2.FB & IsO.FB ); " ISTYPE 'BUFFER' 
Clk ) ; 

S3.FB & S2.FB & sl.FB 
# s3.FB & !s2.FB & sO.FB 
# !s3.FB  &  s2.FB  &   !sl.FB  &  sO.FB 
# !s3.FB  &  S2.FB &   !sl.FB &   ÜStrb   );    "   ISTYPE   'BUFFER' 

(     Clk  ); 

OUt.D        =    (      !s3.FB  &   !sl.FB  &   isO.FB 
# s3.FB  &  Din 
# !S3.FB & !s2.FB & Isl.FB & !Par ); " ISTYPE 'BUFFER' 

out.C   = (  Clk ); 

busy.D  = (  S3.FB 
# s2.FB & !sl.FB 
# !sl.FB & sO.FB ); " ISTYPE 'BUFFER' 

busy.C  = (  Clk ); 

Ackn.D  = (  S3.FB 
# !s2.FB & Isl.FB 
# !sl.FB & sO.FB ); " ISTYPE 'BUFFER' 

Ackn.C  = (  Clk ); 

Figure 197. Control State Machine Summary Information. 
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== P18CV8 Chip Diagram ==== 

P18CV8 

+ \ 

Clk 

Din 

Ein 

Par 

GND 10 

20 Vcc 

19 sO 

18 si 

17 s2 

16 s3 

15 iStrb 

14 out 

13 Ackn 

12 busy 

11 Strb 

== P18CV8 Resource Allocations === 

Device 
Resources 

Dedicated input pins 
Combinatorial inputs 
Registered inputs 

Dedicated output pins 
Bidirectional pins 
Combinatorial outputs 
Registered outputs 
Reg/Com outputs 
Two-input XOR 

Buried nodes 
Buried registers 
Buried combinatorials 

Resource  |   Design    |    Part     | 
Available j Requirement | Utilization | Unused 

10    |      5     |     5      |     5 ( 50 %) 
10    |      5     j     5      |     5 ( 50 %) 

1      o    j    -      |    - 

1       7     1              1 
8    |       1     j     8       |     0(0%) 

1       1     1     -       1     " 
j       7     |     -       | 

8    |       -     |     8       j     0(0%) 
1      o    j    -      j    - 

-   1     o   1   -     1   - 
j      0    j    -      |    - 
j       0     j     -       j     - 

Figure 197. Control State Machine Summary Information, (continued) 
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P18CV8 Product Terms Distribution 

Signal Pin Terms Terms Terms 

Name Assigned Used Max Unused 

iStrb 15 1 8 7 

S3.REG 16 3 8 5 
s2.REG 17 4 8 4 

si.REG 18 2 8 6 

sO.REG 19 4 8 4 

out.REG 14 3 8 5 

busy.REG 12 3 8 5 

Ackn.REG 13 3 8 5 

List of Inputs/Feedbacks ===== 

Signal Name Pin Pin Type 

Clk 1 CLK/IN 
Strb 11 INPUT 
iStrb 15 BIDIR 
Ein 8 INPUT 
Din 2 INPUT 
Par 9 INPUT 

=== P18CV8 Unused Resources ===== 

Pin Pin Product Flip-flop 
Number Type Terms Type 

3 INPUT - - 

4 INPUT - - 
5 INPUT - - 
6 INPUT - - 
7 INPUT - - 

Figure 197. Control State Machine Summary Information, (continued) 
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3. Eight-to-One Multiplexer 

Information regarding the eight-to-one multiplexer is included in Figure 198. 

Eight to One Multiplexer 

===== P18CV8 Programmed Logic 

out 

nClk 

( sO & !sl & !s2 & aO 
# sO & si & !s2 & al 
# sO & si & s2 & a2 
# !s0 & si & s2 & a3 
# !s0 & si & !s2 & a4 
# !s0 & !sl & !s2 & a5 
# !s0 & !sl & s2 & a6 
# sO & !sl & s2 & a7 ); 

( !Clk ); 

P18CV8 Chip Diagram === 

P18CV8 

1 

aO 2 

al 3 

a2 4 

a3 5 

a4 6 

a5 7 

a6 8 

a7 9 

GND 10 

20 Vcc 

19 

18 

17 

16 nClk 

15 out 

14 s2 

13 si 

12 sO 

11 Clk 

Figure 198. Eight-to-One Multiplexer Summary Information. 
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==== P18CV8 Resource Allocations 

Device 
Resources 

Resource  |  Design   |   Part    | 
Available | Requirement | Utilization | Unused 

Dedicated input pins 
Combinatorial inputs 
Registered inputs 

Dedicated output pins 
Bidirectional pins 
Combinatorial outputs 
Registered outputs 
Reg/Com outputs 
Two-input XOR 

Buried nodes 
Buried registers 
Buried combinatorials 

10    |     12     |    9      |     1 ( 10 %) 
10    |      9     |    9      |     1 ( 10 %) 

1    .0   |   -     1   - 

1      2     |    -      |     - 
8    |       0     |     5       j     3 ( 37 %) 

1      2     |    -      |     - 
1     0    |    —     |    — 

8    |       -     |     2       |     6 ( 75 %) 
i      o    |    -      |    - 

1      o    1           1 
1     o    |    -     |    - 
1     o    |    -     |    - 

P18CV8 Product Terms Distribution === 

Signal 
Name 

Pin 
Assigned 

out I   15 
nClk [   16 

== List of Inputs/Feedbacks == 

Terms 
Used 

Terms 
Max 

Terms 
Unused 

Signal Name 

sO 
si 
s2 
aO 
al 
a2 
a3 
a4 
a5 
a6 
a7 
Clk 

| Pin Pin Type 
|========== ========= 

1   I2 BIDIR 

1   I3 BIDIR 

1   I4 BIDIR 
1    2 INPUT 
|    3 INPUT 
|    4 INPUT 

1    5 INPUT 

1    6 INPUT 

1    7 INPUT 

1    8 INPUT 

1    9 INPUT 

1  n INPUT 

==== P18CV8 Unused Resources 

Pin 
Number 

Pin 
Type 

Product 
Terms 

Flip-flop 
Type 

17 
18 
19 

BIDIR 
BIDIR 
BIDIR 

NORMAL 8 
NORMAL 8 
NORMAL  8 

D 
D 
D 

Figure 198. Eight-to-One Multiplexer Summary Information, (continued) 
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APPENDIX G COMMAND TRANSMISSION PROGRAM 

The Parallel Port Data Modulator provides a means to convert command bytes from 

a computer parallel port to the required serial bit stream. A software interface is needed to 

place the bytes on the parallel port for the command modulator to read.  C++ was used to 

write such an interface. 

A. PARALLEL PORT COMMAND TRANSMISSION 

The command transmission program accepts byte values from the user and places 

those bytes onto the parallel port. The program checks to determine if the peripheral is busy 

before placing the command on the port. If the port remains busy for an extended period, 

the program notifies the user. After placing the command on the parallel port, the 

transmission interface checks for modulator acknowledgement. Once acknowledgement is 

received or a wait period expires, the program prompts the user for the next command byte. 

The source code for the test program is provided in Figure 199. 
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// Program: parallel.cpp 
// Name: Jeff Link 
// 
// Parallel Command Transmitter, ver 1.2 
// Operating Environment: DOS 
// Compiler: Borland C++ ver 5.02 
// Date: 10 March 1999 
// 
// Description:  This program issues user entered command bytes to the 
//    parallel port and waits for the command to be acknowledged.  The 
//    program is a driver for the Parallel Port Data Modulator developed 
//    in conjunction with the Tactor Interface Chip research project. 
//***'*************************************************** 

#include <iostream.h>; 
#include <dos.h>; 

int getValue(); 

void main(void) { 
cout « "Parallel Command Transmitter, ver 1.2" « endl; 
cout « "Jeff Link (c) 1999 All rights reserved.\n" « endl; 
int *portlist = (int *)0x408; 
int lptldata = *portlist; 
int lptlstat=lptldata+l; 
int lptlcont=lptldata+2; 
cout « "LPT1 detected at " « lptldata « endl; 
int val,ii,resp; 
while((val=getValue())<256 && val>-l) { 

ii=0; // this loop waits if port is busy- 
while ((resp=(inportb(lptlstat)&0x80))==0 && ii <= 1000) { 

if (ii%100==0) 
cout « "Parallel port is busy for " « ii « " cycles." « endl; 

++ii; 
} 
if (resp != 0) { 
outportb(lptldata,val); // put data on port 
outportb(lptlcont,0x01);        // send strobe signal 
ii=0; // this loop waits for acknowledgement 
while ((resp=inportb(lptlstat)&0x40)==0 && ii <=1000) { 

if (ii%100==0) 
cout « "Waiting " « ii « " cycles for acknowledgement." « endl; 

++ii; 
} 
outportb(lptlcont,0x00);        // clear strobe signal 
if (resp == 0) 
cout « "No data acknowledgement received." « endl; 

} 
else 

cout « "Command transmission aborted; no data sent." « endl; 

} 
} 

int getValue() { 
int val; 
cout « "Enter value for BYTE to send (>255 quits): "; 
ein >> val; 
return val; 

}  ;  

Figure 199. Command Transmission Driver C++ source code. 
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APPENDIX H. GOMAC CONFERENCE PAPER 

The research presented in this thesis was also published and presented at the 1999 

Government Microcircuit Applications Conference. The four-page article, Reference 2, is 

included as Figure 200, Figure 201, Figure 202, and Figure 203. 
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A BUS INTERFACE CHIP FOR TACTILE COMMUNICATIONS 

Jeffrey P. Link and Douglas J. Fouls 
l.'.S. Naval Postgraduate School 

MoiiIerev.C'Al)3V43 

ABSTRACT 

Implementation of tactile communication requires rapid 
parametric data transfer along a common bus. The 
developed communication protocol and application-specific 
interface chip enable precise control of multiple taclors to 
convey information to military users. 

INTRODUCTION 

Touch is a physical sensory input not commonly associated 
with conveying computer information. Yet. when a person 
is touched, the response is immediate and often involuntary. 
The immediate nature of touch response makes it ideal for 
communicating critical information. Tactile communication 
can also be the most appropriate interface for specific types 
of information when existing visual and auditory activities 
cannot be compromised ''. 

The Naval Aerospace Medical Research Laboratory built a 
rudimentary implementation of tactile communication in 
their Tactile Situation Awareness System (TSAS). To 
refine, this interface, the Naval Postgraduate School 
developed a compact communication topology for 
connecting each tactile transmitter (tactor) to the controlling 
microprocessor. Serial communications were selected lor 
this application to minimize the number of conductors 
required lor data transfer. 

An application-specific 'factor Interface Chip (TIC) 
provides the necessary hardware to realize the serial 
communication scheme. Bach tactor in a forty-clement 
array will include a TIC. as shown in Figure I. that controls 
tactor activation. This hardware combination forms an 
"intelligent tactor" that shifts waveform creation from the 

4-wiir 
harness 

-K-~. .----.,a^.....■niftT.-il|-i;1ti111-il<lr-TViiiWr. : 

interface chip I 

Figure I. The Tactor Interlace Chip (TIC) embedded in the 
casing of each tactile transmitter (tactor) controls 
application^!' power for waveform generation. 

microprocessor to the individual taclors. The resulting 
decrease in computational load allows use of a slower 
microprocessor, decreasing system power consumption. 

COMPETING DESIGN CONSTRAINTS 

SIZE: Funding limits forced microchip size to be a primary 
constraint. Since component interconnections consume the 
majority of VLSI layout area1"', chip size primarily bounds 
the number of circuit components. This sharply limits 
circuit complexity and fundamentally affected design 
decisions. 

POWER: Since the tactile interface is a stand-alone bridge 
between the information source and the human user, each 
TIC must draw minimum current from the battery-powered 
system. Using the smallest possible CMOS FH'l's 
throughout the circuit minimizes power consumption of the 
elementary components. Aggressively simplifying the logic 
structure further reduced power requirements. 

SPEED: Small transistor size adversely influences response 
time. .Minimum transistor size is sufficient at a 1 MHz 
clock speed unless long interconnects or several components 
must be driven. Individual elements were resized based on 
their output loading. 

CONTROL STRUCTURE 

ADDRESS: Transmission of tactile messages requires each 
tactor in the forty-clement array to be capable of producing 
defined pulse shapes. These tactile signals can be 
independent or synchronized with several other taclors. 
Since the pulse shape parameters are transmitted on a 
common data bus. each TIC must be able to recognize 
commands meant to control the attached tactor. Unique 
identification is accomplished by assigning an "address" to 
each TIC. Use of a single TIC design for all taclors is 
possible by externally setting the address parameter by 
grounding TIC input pins. Planned modifications to this 
design are discussed in the "Future Improvements" section 
of this paper. 

PULSE SHAPE: Tactors are repeatedly pulsed to convey 
information to the user. Changing the pulse duration and 
pulse rate creates different physical sensations and can be 
used to relate differing messages. Coordinated pulse shapes 
on adjacent tactors can produce an illusion of motion to 
relate additional information. Pulse shape production 
requires two parameters, pulse width and repetition period, 
illustrated in Figure 2. The TIC stores these values in data 
registers that are'used to control tactor activation. 

Figure 200. GOMAC Conference Paper (page 1 of 4). 
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Figure 2.  'Factor activation is controlled by the pulse width 
and repetition period values that are stored on the TIC. 

COMMUNICATION PROTOCOL 

An cighl-bil communication scheme is utilized lo ensure 
easy integration 10 different micro-controllers. The data 
words represent address, pulse width, and repetition period 
commands  as  summarized   in  Table   I.     The   Universal 

j    Word l-'oruiat Meaning 

j    I) X X X X X X X 7-bit Address 

I     1  (1 X X X X X X 6-bit Pulse Width 
1 
!     1   1  X X X X X X 6-bit Repetition Period 

Table 1.   Format of the three command types allows rapid 
address comparison and pulse-shape parameter storage. 

Synchronous/Asynchronous Receiver-Transmitter (USART; 
data format is used to package the command bytes into a 
serial bit stream that can be easily detected. The packet is 
illustrated in Figure 3 and includes a start bit. eight data bits, 
a parity bit and a stop bit. This data package formal also 
provides basic fault protection. The data line remains at a 
loaic "1" while idle. 

P       > 

p;irity stop 

Figure .i.   Standard ÜSART format provides a discernible 
package and basic error detection. 

OPERATIONAL INSCRIPTION 

The TIC continuously monitors the serial data bus and 
decodes the bit stream to detect and latch command bytes 
onto an internal command bus. When the bytes are latched. 
a data-valid signal triggers command evaluation and 
subsequent control of the TIC operational stale. The state 
diagram in Figure 4 illustrates ihe TIC operating sequence. 

Initially, the TIC is in a monitor state waiting to receive a 
valid address. When an appropriate address is received, the 
TIC shifts lo a condition that waits for a command to set the 
register values. When a register command is received, the 
TIC enters a state that responds to all register commands 
until an address is delected, marking the end of the 
command cycle.    This operating sequence provides easy 

kciisier Command Received Valid Address Received 

initial Suite    TransitionCondition 

All 

A 

IS 

Ii 

( 

( 

: Reset asserted 

! Bus valid iV valid address 

Any oilier address received 

Anv leLiisler command received 

i Any address received 

i Anv re'eisler command received 

; Next Stale 

A 

15 

Ii 

C 

A 

c: 

Figure 4.   The Operating Sequence ensures that each TIC 
only responds to properly addresses commands. 

control and allows ihe identical command to be sent to 
several tactors simultaneously. 

If ihe stored pulse width is non-zero, the TIC activates the 
aliached laelor in a pattern defined by the stored values of 
pulse width and repetition period. Any change to either 
waveform parameter will cause ihe TIC to reset the wave 
counter, synchronizing all tactors that simultaneously 
receive the command. 

FUNCTIONAL COMPONENTS 

TIC design focused on three areas: detecting and latching 
serial commands onto the command bus, interpreting 
commands to set the activation parameters, and generating 
bipolar eurrenl to drive the attached tactor. Each functional 
area was designed to operate independently with well- 
defined inputs and outputs. This modular approach was 
critical to the design and testing of lower-level components. 

SliKIAI. DATA RECKIVER. The Serial Data Receiver 
(Figure 5; continuously monitors the input data line to 
detect and latch transmitted packets onto the command bus. 
It consists of a twelve-bit shift register, a validity checker, 
and an eight-bil latch. .The most recent twelve data bits arc 
stored in the shift register and compared to the USART 
format rules. When a siring of bits is detected that meets the 
validity check, the command byte of the data packet is 
latched onto the command bus. The latch signal also 
triggers a "Bus Data Valid" signal that enables the command 
decoder. A feedback path partially clears the shift register 
to ensure that two immediately sequential data packets do 
not produce an erroneous command detection. 

Figure 201. GOMAC Conference Paper (page 2 of 4). 
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Serial Data Receiver 
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Figure   5.     The   .Serial   Data   Receiver  extracts   the 
commands from tin.' serial command stream. 
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COMMAND DECODER AND CONTROLLER. The 
Command Decoder and Controller (Figure 6; evaluates the 
received commands and adjusts the internally stored 
waveform parameters if the command is properly addressed 
lo the attached tactor. il consists of a sequence control let, 
address eomparitor. and two si.\-bit registers. The sequence 
controller is a state machine (refer to Figure 4) that causes 
the TIC lo react only to properly addressed commands. The 
address reference maintains a unique address lor the 
individual tactor. The TIC ignores all received commands 
until the address eomparitor delects its assigned address (or 
the "all call" addressi. It then updates the stored pulse width 
and repetition period with every new register command. 
Then, when an address is received, the TIC" returns to a 
monitor condition and wails for the next properly addressed 
command. 

Command Decoder and Controller 
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Figure 6. The Command Decoder and Controller interprets 
commands and updates register values as appropriate. 

TACTOR POWER CONTROLLER. The Tactor Power 
Controller (Figure 7) converts the input data signals into 
pulsed bipolar power that is applied directly to the tactor. A 
frequency divider reduces the I MHz clock lo a selectable 
tactor oscillating frequency and a 62.5 Hz down counter 
clock.    The oscillator frequency is applied lo the power 

oscillator lo produce alternating current for the tactor. 'I he- 
power controller uses two synchronized down counters to 
create the stored wave shape by activating and disabling the 
power oscillator output. The control logic produces the 
wave cvele by clearing and loading both down counters 
based on the down counter conditions and the "enable 
output" signal. 

Tactor Power Controller 
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Figure 7. The 'factor Power Controller applies power lo the 
lactor based on stored wave-shape parameters. 

SPECIAL DESIGN FEATURES 

Several features of the current design provide enhanced 
svstem performance. Some features are included primarily 
for chip testing and evaluation. 

MULTIPLE COMMAND PACKET ADDRESSING. The 
operating-state transition definitions allow a command byte 
stream that includes multiple TIC addresses. This feature 
allows a command to activate several taclors with a single, 
synchronized wave-shape. 

ALI .-CALL ADDRESS. One address value is reserved to 
represent a valid address for all TICs. This feature is 
intended for use with a system reset command or when 
testing the cnlii'C communication array. 

DIAL RESET CIRCUIT. The analog response of the 
circuit components is used to produce an initial reset signal 
for the first 201) nS of TIC operation. The reset ensures thai 
all components establish a known condition when ihe circuit 
is siarted. A selectable, low-voltage reset is included to 
protect the system from an erratic response caused by low 
input voltage. 

SELECTABLE OSCILLATOR FREQUENCY. An input 
jumper provides two tactor oscillation frequencies: 125 Hz 
and 250 Hz. This feature allows the TIC lo be used with 
dillerent taclors during prototype evaluation. 

SELECTABLE ADDRESS. By including Ihe TIC address 
as an external input, a single TIC design is used for all 
lactors in the communication array. In addition to 
enhancing prototype testing, this approach will be retained 
in future versions to ensure that a single "intelligent tactor" 
can function in every possible array position. 

Figure 202. GOMAC Conference Paper (page 3 of 4). 
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FUTURE IMPROVEMENTS 

PROGRAMMABLE ADDRESSES. Use of programmable- 
gates will allow the TIC address to be electronically 
assigned. Additionally, multiple address registers may be 
included to allow issuing TIC commands to groups of 
tactors simultaneously using a single address. 

PROGRAMMABLE OSCILLATION FREQUENCY. 
Adding a frequency register would allow the TIC to vary the 
tactor activation frequency. This could be implemented 
either through an external jumper setting or as an additional 
command. 

PROGRAMMABLE VOLTAGE SHAPING. Currently the 
tactor voltage is applied in a bipolar square wave. Tactor 
response may vary noticeably when a sine wave is used to 
drive the tactor. Use of a varying voltage would also reduce 
the switching transients created by the square-wave current 
spikes. 

EXPANDED INSTRUCTION SET. Many additional 
instructions could he included in the basic TIC control 
language. This change requires restructuring the command 
protocol and making significant changes to the TIC design. 
Including a programmable micro-code register into the 
svstem would provide the most flexible solution. However, 
this approach is not a priority due to its huge increase in 
circuit complexity and required layout area. 

TWO-WAY COMMUNICATIONS. A change to the 
fundamental system paradigm might incorporate the ability 
for real-lime feedback to the controller. The status data 
could include all current TIC parameters. Incorporating an . 
onboard vibration sensor could also provide actual 
indication of tactor operating parameters. 

PROJECT STATUS 

The TIC is completely designed and simulated using 
Cadence VLSI design software. Exhaustive simulation 
shows that the system operates precisely as designed. The 
circuit performed flawlessly at speeds up to 5 MHz. 

The National Science Foundation VLSI design program 
facilitated TIC fabrication through the MOS1S1'1 service. 
MOSIS provides low-cost prototyping and production 
service for VLSI circuit development. 

Initial chip testing produced no delectable output. Visual 
examination of the chip showed areas of possible 
contamination during the fabrication process. Subsequent 
chip evaluation with a scanning electron microscope 
revealed contamination between power lines and between 
data paths (Figure S). Figure 0 shows aluminum oxidation 
detected along some of the conductors. Further evaluation 
is in progress to precisely identify the faults in each chip. 

SUMMARY 

Tactile communication is an extremely viable method of 
conveving  information   without  impeding  other  sensory 

Figure S. Scanning Electron Microscope images of possible 
power shorts (left) and command-bus shorts (right). 
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Figure 9.   Scanning Electron Microscope images of areas 
with aluminum oxidation. 

inputs. In many applications, tactile messages may be most 
appropriate due to their intuitive and covert nature. 

Previously, tactile communication has been experimental 
and limited, lacking methods to take the technology beyond 
the laboratory. The Naval Postgraduate School has 
developed a communication protocol and a tactor interface 
chip thai will advance tactile communication beyond its 
current academic environment. 

Implementation of this concept is currently awaiting VLSI 
fabrication. As more funding becomes available, many 
improvements are planned for the next generation of Tactor 
Interface Chips. The Naval Postgraduale School is anxious 
to advance this technology for military and public 
applications. 
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